scholarly journals Internal Stress Prediction and Measurement of Mid-Infrared Multilayer Thin Films

Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1101
Author(s):  
Chuen-Lin Tien ◽  
Kuan-Po Chen ◽  
Hong-Yi Lin

We present an experimental method for evaluating interfacial force per width and predicting internal stress in mid-infrared band-pass filters (MIR-BPF). The interfacial force per width between the two kinds of thin-film materials was obtained by experimental measurement values, and the residual stress of the multilayer thin films was predicted by the modified Ennos formula. A dual electron beam evaporation system combined with ion-assisted deposition was used to fabricate mid-infrared band-pass filters. The interfacial forces per width for Ge/SiO2 and SiO2/Ge were 124.9 N/m and 127.6 N/m, respectively. The difference between the measured stress and predicted stress in the 23-layer MIR-BPF was below 0.059 GPa. The residual stresses of the four-layer film, as well as the 20-layer and 23-layer mid-infrared band-pass filter, were predicted by adding the interface stress to the modified Ennos formula. In the four-layer film, the difference between the predicted value and the measured stress of the HL (high–low refractive index) and LH (low–high refractive index) stacks were −0.384 GPa for (HL)2 and −0.436 GPa for (LH)2, respectively. The predicted stress and the measured stress of the 20-layer mid-infrared filter were −0.316 GPa and −0.250 GPa. The predicted stress and the measured stress of the 23-layer mid-infrared filter were −0.257 GPa and −0.198 GPa, respectively.

2010 ◽  
Vol 97-101 ◽  
pp. 1768-1771 ◽  
Author(s):  
Dong Hun Kim ◽  
Riichi Murakami ◽  
Yun Hae Kim ◽  
Kyung Man Moon ◽  
Seung Jung An ◽  
...  

In order to study the characteristics of multilayer thin films with a ZnO/ metal/ ZnO structure the manufacture of the thin films was performed by a dc (direct current) magnetron sputtering system on slide glass substrates. The ZnO thin films were manufactured with the thicknesses of 30 nm and 50 nm. Three kinds of metals (Ag, Al and Cu) were deposited with the thicknesses of 4 nm, 8 nm, 12 nm and 16 nm. The electrical and optical properties of the manufactured thin films were then observed. As a result, the multilayer thin films with an Ag layer represented the most excellent electrical conductivity. This is due to the difference in the fundamental electrical properties of each of the metals. The structures of the metal particles deposited on the ZnO thin films were observed by an SEM (scanning electron microscope). The thin films exhibited a continuous structure with regular spaces between the metal particles. This resulted in an increase of transmittance. This is considered by the decrease of scattering and of light absorption on thin films with a continuous structure.


Coatings ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 517 ◽  
Author(s):  
F. V. Grigoriev ◽  
V. B. Sulimov ◽  
A.V. Tikhonravov

In this article, a combined approach for studying the optical anisotropy of porous thin films obtained by the glancing angle deposition is presented. This approach combines modeling on the atomistic and continuum levels. First, thin films clusters are obtained using the full-atomistic molecular dynamics simulation of the deposition process. Then, these clusters are represented as a medium with anisotropic pores, the shapes parameters of which are determined using the Monte Carlo based method. The difference in the main components of the refractive index is calculated in the framework of the anisotropic Bruggeman effective medium theory. The presented approach is tested and validated by comparing the analytical and simulation results for the model problems, and then is applied to silicon dioxide thin films. It is found that the maximum difference between the main components of the refractive index is 0.035 in a film deposited at an angle of 80°. The simulation results agree with the experimental data reported in the literature.


2018 ◽  
Vol 27 (8) ◽  
pp. 084212 ◽  
Author(s):  
Somayyeh Asgari ◽  
Hossein Rajabloo ◽  
Nosrat Granpayeh ◽  
Homayoon Oraizi
Keyword(s):  

2016 ◽  
Vol 36 (2) ◽  
pp. 0222004 ◽  
Author(s):  
蔡渊 Cai Yuan ◽  
周晟 Zhou Sheng ◽  
刘定权 Liu Dingquan

2004 ◽  
Vol 19 (11) ◽  
pp. 3374-3381 ◽  
Author(s):  
Evan A. Sperling ◽  
Peter M. Anderson ◽  
Jennifer L. Hay

Heat treatment of γ-Ni(Al)/γ′-Ni3Al multilayer thin films demonstrates that multilayer hardness correlates with the magnitude of biaxial stress in alternating layers. Films with a columnar grain morphology and (001) texture were fabricated over a range of volume fraction and bilayer thickness via direct current magnetron sputtering onto NaCl (001) substrates at 623 K. The films were removed from substrates, heat-treated at either 673 K or 1073 K in argon, and then mounted for nanoindentation and x-ray diffraction. The biaxial stress state in each phase was furnished from x-ray diffraction measurement of (002) interplanar spacings. The 673 K treatment increases the magnitude of alternating biaxial stress state by 70 to 100% and increases hardness by 25 to 100%, depending on bilayer thickness. In contrast, the 1073 K heat treatment decreases the stress magnitude by 70% and decreases hardness by 50%. The results suggest that the yield strength of these thin films is controlled, in part, by the magnitude of internal stress. Further, thermal treatments are demonstrated to be an effective means to manipulate internal stress.


Sign in / Sign up

Export Citation Format

Share Document