scholarly journals Laser Powder Bed Fusion of Polymers: Quantitative Research Direction Indices

Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1169 ◽  
Author(s):  
Ihsan Murat Kusoglu ◽  
Carlos Doñate-Buendía ◽  
Stephan Barcikowski ◽  
Bilal Gökce

Research on Laser Powder Bed Fusion (L-PBF) of polymer powder feedstocks has raised over the last decade due to the increased utilization of the fabricated parts in aerospace, automotive, electronics, and healthcare applications. A total of 600 Science Citation Indexed articles were published on the topic of L-PBF of polymer powder feedstocks in the last decade, being cited more than 10,000 times leading to an h-index of 46. This study statistically evaluates the 100 most cited articles to extract reported material, process, and as-built part properties to analyze the research trends. PA12, PEEK, and TPU are the most employed polymer powder feedstocks, while size, flowability, and thermal behavior are the standardly reported material properties. Likewise, process properties such as laser power, scanning speed, hatch spacing, powder layer thickness, volumetric energy density, and areal energy density are extracted and evaluated. In addition, material and process properties of the as-built parts such as tensile test, flexural test, and volumetric porosity contents are analyzed. The incorporation of additives is found to be an effective route to enhance mechanical and functional properties. Carbon-based additives are typically employed in applications where mechanical properties are essential. Carbon fibers, Ca-phosphates, and SiO2 are the most reported additives in the evaluated SCI-expanded articles for L-PBF of polymer powder feedstocks. A comprehensive data matrix is extracted from the evaluated SCI-index publications, and a principal component analysis (PCA) is performed to explore correlations between reported material, process, and as-built parts.

Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3284
Author(s):  
Asif Ur Rehman ◽  
Muhammad Arif Mahmood ◽  
Fatih Pitir ◽  
Metin Uymaz Salamci ◽  
Andrei C. Popescu ◽  
...  

In the laser powder bed fusion (LPBF) process, the operating conditions are essential in determining laser-induced keyhole regimes based on the thermal distribution. These regimes, classified into shallow and deep keyholes, control the probability and defects formation intensity in the LPBF process. To study and control the keyhole in the LPBF process, mathematical and computational fluid dynamics (CFD) models are presented. For CFD, the volume of fluid method with the discrete element modeling technique was used, while a mathematical model was developed by including the laser beam absorption by the powder bed voids and surface. The dynamic melt pool behavior is explored in detail. Quantitative comparisons are made among experimental, CFD simulation and analytical computing results leading to a good correspondence. In LPBF, the temperature around the laser irradiation zone rises rapidly compared to the surroundings in the powder layer due to the high thermal resistance and the air between the powder particles, resulting in a slow travel of laser transverse heat waves. In LPBF, the keyhole can be classified into shallow and deep keyhole mode, controlled by the energy density. Increasing the energy density, the shallow keyhole mode transforms into the deep keyhole mode. The energy density in a deep keyhole is higher due to the multiple reflections and concentrations of secondary reflected beams within the keyhole, causing the material to vaporize quickly. Due to an elevated temperature distribution in deep keyhole mode, the probability of pores forming is much higher than in a shallow keyhole as the liquid material is close to the vaporization temperature. When the temperature increases rapidly, the material density drops quickly, thus, raising the fluid volume due to the specific heat and fusion latent heat. In return, this lowers the surface tension and affects the melt pool uniformity.


Materials ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 4892
Author(s):  
Ihsan Murat Kusoglu ◽  
Florian Huber ◽  
Carlos Doñate-Buendía ◽  
Anna Rosa Ziefuss ◽  
Bilal Gökce ◽  
...  

In recent years, the application field of laser powder bed fusion of metals and polymers extends through an increasing variability of powder compositions in the market. New powder formulations such as nanoparticle (NP) additivated powder feedstocks are available today. Interestingly, they behave differently along with the entire laser powder bed fusion (PBF-LB) process chain, from flowability over absorbance and microstructure formation to processability and final part properties. Recent studies show that supporting NPs on metal and polymer powder feedstocks enhances processability, avoids crack formation, refines grain size, increases functionality, and improves as-built part properties. Although several inter-laboratory studies (ILSs) on metal and polymer PBF-LB exist, they mainly focus on mechanical properties and primarily ignore nano-additivated feedstocks or standardized assessment of powder feedstock properties. However, those studies must obtain reliable data to validate each property metric’s repeatability and reproducibility limits related to the PBF-LB process chain. We herein propose the design of a large-scale ILS to quantify the effect of nanoparticle additivation on powder characteristics, process behavior, microstructure, and part properties in PBF-LB. Besides the work and sample flow to organize the ILS, the test methods to measure the NP-additivated metal and polymer powder feedstock properties and resulting part properties are defined. A research data management (RDM) plan is designed to extract scientific results from the vast amount of material, process, and part data. The RDM focuses not only on the repeatability and reproducibility of a metric but also on the FAIR principle to include findable, accessible, interoperable, and reusable data/meta-data in additive manufacturing. The proposed ILS design gives access to principal component analysis (PCA) to compute the correlations between the material–process–microstructure–part properties.


Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 538 ◽  
Author(s):  
Fabrizia Caiazzo ◽  
Vittorio Alfieri ◽  
Giuseppe Casalino

Laser powder bed fusion (LPBF) can fabricate products with tailored mechanical and surface properties. In fact, surface texture, roughness, pore size, the resulting fractional density, and microhardness highly depend on the processing conditions, which are very difficult to deal with. Therefore, this paper aims at investigating the relevance of the volumetric energy density (VED) that is a concise index of some governing factors with a potential operational use. This paper proves the fact that the observed experimental variation in the surface roughness, number and size of pores, the fractional density, and Vickers hardness can be explained in terms of VED that can help the investigator in dealing with several process parameters at once.


2020 ◽  
Vol 26 (1) ◽  
pp. 100-106 ◽  
Author(s):  
Tobias Kolb ◽  
Reza Elahi ◽  
Jan Seeger ◽  
Mathews Soris ◽  
Christian Scheitler ◽  
...  

Purpose The purpose of this paper is to analyse the signal dependency of the camera-based coaxial monitoring system QMMeltpool 3D (Concept Laser GmbH, Lichtenfels, Germany) for laser powder bed fusion (LPBF) under the variation of process parameters, position, direction and layer thickness to determine the capability of the system. Because such and similar monitoring systems are designed and presented for quality assurance in series production, it is important to present the dominant signal influences and limitations. Design/methodology/approach Hardware of the commercially available coaxial monitoring QMMeltpool 3D is used to investigate the thermal emission of the interaction zone during LPBF. The raw images of the camera are analysed by means of image processing to bypass the software of QMMeltpool 3D and to gain a high level of signal understanding. Laser power, scan speed, laser spot diameter and powder layer thickness were varied for single-melt tracks to determine the influence of a parameter variation on the measured sensory signals. The effects of the scan direction and position were also analysed in detail. The influence of surface roughness on the detected sensory signals was simulated by a machined substrate plate. Findings Parameter variations are confirmed to be detectable. Because of strong directional and positional dependencies of the melt-pool monitoring signal a calibration algorithm is necessary. A decreasing signal is detected for increasing layer thickness. Surface roughness is identified as a dominating factor with major influence on the melt-pool monitoring signal exceeding other process flaws. Research limitations/implications This work was performed with the hardware of a commercially available QMMeltpool 3D system of an LPBF machine M2 of the company Concept Laser GmbH. The results are relevant for all melt-pool monitoring research activities connected to LPBF, as well as for end users and serial production. Originality/value Surface roughness has not yet been revealed as being one of the most important origins for signal deviations in coaxial melt-pool monitoring. To the best of the authors’ knowledge, the direct comparison of influences because of parameters and environment has not been published to this extent. The detection, evaluation and remelting of surface roughness constitute a plausible workflow for closed-loop control in LPBF.


Materials ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 3927
Author(s):  
Eo Ryeong Lee ◽  
Se Eun Shin ◽  
Naoki Takata ◽  
Makoto Kobashi ◽  
Masaki Kato

This study provides a novel approach to fabricating Al/C composites using laser powder bed fusion (LPBF) for a wide range of structural applications utilizing Al-matrix composites in additive manufacturing. We investigated the effects of LPBF on the fabrication of aluminum/multiwalled carbon nanotube (Al/MWCNT) composites under 25 different conditions, using varying laser power levels and scan speeds. The microstructures and mechanical properties of the specimens, such as elastic modulus and nanohardness, were analyzed, and trends were identified. We observed favorable sintering behavior under laser conditions with low energy density, which verified the suitability of Al/MWCNT composites for a fabrication process using LPBF. The size and number of pores increased in specimens produced under high energy density conditions, suggesting that they are more influenced by laser power than scan speed. Similarly, the elastic modulus of a specimen was also more affected by laser power than scan speed. In contrast, scan speed had a greater influence on the final nanohardness. Depending on the laser power used, we observed a difference in the crystallographic orientation of the specimens by a laser power during LPBF. When energy density is high, texture development of all samples tended to be more pronounced.


Author(s):  
Bo Cheng ◽  
Brandon Lane ◽  
Justin Whiting ◽  
Kevin Chou

Powder bed metal additive manufacturing (AM) utilizes a high-energy heat source scanning at the surface of a powder layer in a pre-defined area to be melted and solidified to fabricate parts layer by layer. It is known that powder bed metal AM is primarily a thermal process and further, heat conduction is the dominant heat transfer mode in the process. Hence, understanding the powder bed thermal conductivity is crucial to process temperature predictions, because powder thermal conductivity could be substantially different from its solid counterpart. On the other hand, measuring the powder thermal conductivity is a challenging task. The objective of this study is to investigate the powder thermal conductivity using a method that combines a thermal diffusivity measurement technique and a numerical heat transfer model. In the experimental aspect, disk-shaped samples, with powder inside, made by a laser powder bed fusion (LPBF) system, are measured using a laser flash system to obtain the thermal diffusivity and the normalized temperature history during testing. In parallel, a finite element model is developed to simulate the transient heat transfer of the laser flash process. The numerical model was first validated using reference material testing. Then, the model is extended to incorporate powder enclosed in an LPBF sample with thermal properties to be determined using an inverse method to approximate the simulation results to the thermal data from the experiments. In order to include the powder particles’ contribution in the measurement, an improved model geometry, which improves the contact condition between powder particles and the sample solid shell, has been tested. A multi-point optimization inverse heat transfer method is used to calculate the powder thermal conductivity. From this study, the thermal conductivity of a nickel alloy 625 powder in powder bed conditions is estimated to be 1.01 W/m·K at 500 °C.


Sign in / Sign up

Export Citation Format

Share Document