scholarly journals Complex Concentrated Alloys for Substitution of Critical Raw Materials in Applications for Extreme Conditions

Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1197
Author(s):  
Dumitru Mitrica ◽  
Ioana Cristina Badea ◽  
Beatrice Adriana Serban ◽  
Mihai Tudor Olaru ◽  
Denisa Vonica ◽  
...  

The paper is proposing a mini-review on the capability of the new complex concentrated alloys (CCAs) to substitute or reduce the use of critical raw materials in applications for extreme conditions. Aspects regarding the regulations and expectations formulated by the European Union in the most recent reports on the critical raw materials were presented concisely. A general evaluation was performed on the CCAs concept and the research directions. The advantages of using critical metals for particular applications were presented to acknowledge the difficulty in the substitution of such elements with other materials. In order to establish the level of involvement of CCAs in the reduction of critical metal in extreme environment applications, a presentation was made of the previous achievements in the field and the potential for the reduction of critical metal content through the use of multi-component compositions.

2019 ◽  
Vol 108 ◽  
pp. 02011
Author(s):  
Karolina Kossakowska ◽  
Katarzyna Grzesik

Rare Earth Elements (REEs) are identified as critical raw materials for the European Union economy. REEs are not currently produced in the EU, while there are several sources not properly addressed. Within the ENVIREE project tailings from New Kankberg (Sweden) and Covas (Portugal) were identified as rich in REEs and chosen for recovery processing. The Life Cycle Assessment (LCA) methodology was used to evaluate the environmental impact of REEs recovery. The aim of this study is the detailed analysis of several scenarios with different electricity production schemes of REE recovery. The study discusses the share of energy use in the overall impact on the environment, taking into account diversification in the electricity production structure among EU countries. The energy use is a significant contributor to the overall environmental impact of studied cases. Its share in the total environmental burden is reaching up to 47%. The results show that applying the average electricity scheme production for Europe may lead to biased LCA results. For the accurate LCA results the local production schemes of energy for certain countries should be chosen.


Minerals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 975
Author(s):  
Slobodan Radusinović ◽  
Argyrios Papadopoulos

Research for critical raw materials is of special interest, due to their increasing demand, opulence of applications and shortage of supply. Bauxites, or bauxite residue after alumina extraction can be sources of critical raw materials (CRMs) due to their content of rare earth elements and other critical elements. Montenegrin bauxites and bauxite residue (red mud) are investigated for their mineralogy and geochemistry. The study of the CRM’s potential of the Montenegrin bauxite residue after the application of Bayer process, is performed for the first time. Montenegrin bauxites, (Jurassic bauxites from the Vojnik-Maganik and Prekornica ore regions from the Early Jurassic, Middle Jurassic-Oxfordian and Late Triassic paleorelief) are promising for their REE’s content (around 1000 ppm of ΣREE’s). More specifically, they are especially enriched in LREEs compared to HREEs. Regarding other CRMs and other elements, Ti, V, Zr, Nb, Sr and Ga could also be promising. In bauxite residue, the contents of Zr, Sr, V, Sc, La, Ce, Y, Ti and Nb are higher than those in bauxites. However, raw bauxites and bauxite residue as a secondary raw material can be considered as possible sources of CRMs.


2021 ◽  
Author(s):  
Lisbeth Flindt Jørgensen ◽  
Špela Kumelj ◽  
Teresa Brown

<p>Geological raw materials cover a wide range of materials from sand and gravel over granites and marbles to precious or critical metals and minerals. Man has extracted these materials from the (sub)surface since prehistorical eras, and these indispensable substances have to a very large extent contributed to the evolution of humankind.</p><p>In the latest decades, raw materials of economically and strategically importance for society but with high-risks associated with their supply, referred to as Critical Raw Materials (CRMs). To a large extent they form the basis for modern society as they are essential in key industry sectors. In the latest years, access to CRMs is a strategic security question for Europe’s road towards the green transition.</p><p>In September 2020, The European Commission launched a new list of CRMs as well as a strategy to enhance Europe’s resilience as most of these substances are sourced from other continents, and as the global competitions is increasing (EC, 2020). Among others, one of the suggested actions in this strategy is to ‘strengthen the sustainable and responsible domestic sourcing ……. in the European Union’. Although Europe has a long tradition of mining and extractive activities, it is acknowledged that there are several challenges to reach a situation with European sourcing of a certain amount of CRMs. Challenges include lack of interest in investment, strict permitting procedures or low levels of public acceptance. Nevertheless, it is recognized that the European geological conditions carry significant potential for CRMs, but more harmonised knowledge across borders is needed. This is where the Geological Survey Organisations of Europe play an important role as they are key partners in collecting and storing information on raw materials at national levels, and in making these available for endusers as policy and decision makers.  </p><p>All European countries have a national geological survey organization, some in addition a number of regional surveys. Most host data on raw materials, however, data are typically organized in different ways from one country to another based on different geological traditions and legal commitments. In the GeoERA MINTELL4EU project we build on previous projects as Minerals4EU, ProSUM, SCRREEN, ORAMA, and cooperate with ongoing projects as RESEERVE to collect raw material data in central database and to visualize these data in harmonized way at the European Geological Data Infrastructure (EGDI). Data includes, among other things, the location of individual mineral occurrences, mines, etc. stored in a central database called MIN4EU, and aggregated statistical data at national level on production, trade and reserves etc, compiled in what we know as the electronic Minerals Yearbook. The methods used for collecting (harvesting) and storing data will be discussed, and examples of harmonized visualizations will be shared.</p><p>MINTELL4EU is a part of the GeoERA programme supported by European Union's Horizon 2020, grant agreement no. 731166. </p>


2021 ◽  
Author(s):  
Jérôme Bodin ◽  
Guillaume Bertrand ◽  
Patrick D'Hugues

<p>In line with the perspective of the Raw Material Initiative launched in 2008 by the European Commission to ensure access to and supply of critical raw materials in Europe, the H2020-funded IMPaCT project (Grant no. 730411) aims to develop a Switch-On Switch-Off (SO-SO) concept as an emergence of a new modern small-scale mining paradigm. Its ultimate goal is to increase the viability of many critical metals hosted in small primary deposits, particularly in Europe, by developing a modularized mobile plant (MMP) concept that can economically operate different type of ores in different types of geological and geographical contexts.</p><p>In addition, the project addresses the prospect of applying the SO-SO concept and the small-scale mining paradigm with regard to the reprocessing of mineral wastes in Europe. A dataset of legacy deposits of interest for the SO-SO concept was drawn from the ProMine Anthropogenic Concentration (AC) database (built during the European FP7 ProMine project) used as the data source and by applying a sequential-rating as a methodology to rank records and to highlight potential targets.</p><p>Apart from national mining wastes registries, the ProMine AC database remains so far the most exhaustive and reliable attempt at a consolidated pan-European database regarding mining wastes. Despite data shortcoming in the ProMine AC database, this study proposes potential targets of mineral wastes for the SO-SO concept in Europe and provides with preliminary information on location, type of waste, commodities content, tonnage and their potential.</p><p>To put into perspective the application of the SO-SO concept and the small-scale mining paradigm in regards with mineral wastes reprocessing, this study also proposes generic flowsheets to address specific potential targets identified among the records from the ProMine AC database and based on the preliminary information available. However, the relevancy and completeness of these information still require a case-by-case assessment. As a result, this methodology falls into a scoping approach that could be applied ahead of (pre)feasibility studies.</p><p>Combining the re-exploitation of a primary ore deposit along with the reprocessing of its wastes inherited from previous mining and ore processing activities is of great interest in seeking social acceptance. Eventually, in such perspective, a cross survey of the potential of both primary deposits, using the ProMine Mineral Deposits (MD) database, and secondary deposits, using the ProMine AC database, therefore appears as a relevant scoping strategy ahead of implementing small-scale mining.</p>


Recycling ◽  
2019 ◽  
Vol 4 (4) ◽  
pp. 44 ◽  
Author(s):  
Paolo Ferro ◽  
Franco Bonollo

The European Union (EU) identified a number of raw materials that are strategic for its economy but suffer at the same time from a high supply risk. Such critical raw materials (CRMs) are used in a wide range of commercial and governmental applications: green technology, telecommunications, space exploration, aerial imaging, aviation, medical devices, micro-electronics, transportation, defense, and other high-technology products and services. As a result, the industry, the environment, and our quality and modern way of life are reliant on the access and use of them. In this scenario, recycling may be a strategic mitigating action aimed at reducing the critical raw materials supply risks. In this work, a design strategy is proposed for alloys selection that minimizes the number of CRMs with the lowest end-of-life recycling input rate. The method is illustrated with an example.


Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7682
Author(s):  
Adam Duda ◽  
Gregorio Fidalgo Valverde

Coking coal has been on the European list of critical raw materials since 2014 due to its high economic importance and high supply risk. In 2017, coking coal narrowly missed passing the threshold of economic importance. However, out of caution, it remained on the list of critical raw materials, as the steel industry still needs it. It is likely to be phased out of the list below when it does not fully meet the required criteria. As there are no significant alternatives for this energy intensive industry and neither electrification nor material or energy efficiency improvements are yet available at a sufficient level of technological readiness, the European Union remains dependent on coking coal imports. Therefore, any coking coal mining project in Europe is of great importance and an important alternative to solving the problems of providing this raw material. In this study, the Dębieńsko coking coal project in Poland is analyzed using a scientifically proven methodology based on world-class analysis of coking coal projects submitted for financing to financial institutions.


2021 ◽  
Vol 11 (5) ◽  
pp. 12-23
Author(s):  
Michal Cehlár ◽  
Zuzana Šimková

The presented article deals with the issue of critical raw materials in the European Union with an emphasis on sustainable development and also barite, as an only one critical raw material mined in Slovakia. The article points out in detail the deposits of individual critical raw materials within the European Union. They clearly profile the European area´s dependence on imports of critical raw materials in accordance with the Communication from the Commission to the Council, the European Economic and Social Committee and the Committee of the Regions on the European Union's list of critical raw materials. Based on a defined Herfindahl-Hirschman index, which is clearly methodologically described, the article also points to the exploitation of critical raw materials in the European Union, what is in consideration of sustainable development crucial because some inventions are fundamentally dependent on them, as is their production on world markets. This article deals with critical raw materials in the EU, because it is in this area that we would like to experience the 4th industrial revolution, which is characterized by "new products" with a short life cycle, products with the least possible impact on the environment, i.e. innovations that are often impossible without important raw materials. Is it at all possible to talk about sustainable development with such raw material sources in European Union?


Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1656
Author(s):  
Maria Luisa Grilli ◽  
Daniele Valerini ◽  
Anca Elena Slobozeanu ◽  
Bogdan O. Postolnyi ◽  
Sebastian Balos ◽  
...  

Several applications where extreme conditions occur require the use of alloys often containing many critical elements. Due to the ever increasing prices of critical raw materials (CRMs) linked to their high supply risk, and because of their fundamental and large utilization in high tech products and applications, it is extremely important to find viable solutions to save CRMs usage. Apart from increasing processes’ efficiency, substitution, and recycling, one of the alternatives to preserve an alloy and increase its operating lifetime, thus saving the CRMs needed for its manufacturing, is to protect it by a suitable coating or a surface treatment. This review presents the most recent trends in coatings for application in high temperature alloys for aerospace engines. CRMs’ current and future saving scenarios in the alloys and coatings for the aerospace engine are also discussed. The overarching aim of this paper is to raise awareness on the CRMs issue related to the alloys and coating for aerospace, suggesting some mitigation measures without having the ambition nor to give a complete overview of the topic nor a turnkey solution.


Sign in / Sign up

Export Citation Format

Share Document