scholarly journals Mechanical and Fracture Parameters of Ultra-High Performance Fiber Reinforcement Concrete Cured via Steam and Water: Optimization of Binder Content

Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2016
Author(s):  
Avan Ahmed Mala ◽  
Aryan Far H. Sherwani ◽  
Khaleel H. Younis ◽  
Rabar H. Faraj ◽  
Amir Mosavi

An investigational study is conducted to examine the effects of different amounts of binders and curing methods on the mechanical behavior and ductility of Ultra-High Performance Fiber Reinforced Concretes (UHPFRCs) that contain 2% of Micro Steel Fiber (MSF). The aim is to find an optimum binder content for the UHPFRC mixes. The same water-to-binder ratio (w/b) of 0.12 was used for both water curing (WC) and steam curing (SC). Based on the curing methods, two series of eight mixes of UHPFRCs containing different binder contents ranging from 850 to 1200 kg/m3 with an increment of 50 kg/m3 were produced. Mechanical properties such as compressive strength, splitting tensile strength, static elastic module, flexural tensile strength and the ductility behavior were investigated. This study revealed that the mixture of 1150 kg/m3 binder content exhibited the highest values of the experimental results such as a compressive strength greater than 190 MPa, a splitting tensile strength greater than 12.5 MPa, and a modulus of elasticity higher than 45 GPa. The results also show that all of the improvements began to slightly decrease at 1200 kg/m3 of the binder content. On the other hand, it was concluded that SC resulted in higher mechanical performance and ductility behavior than WC.

2013 ◽  
Vol 357-360 ◽  
pp. 1062-1065 ◽  
Author(s):  
Jeong Eun Kim ◽  
Wan Shin Park ◽  
Song Hui Yun ◽  
Do Gyeum Kim ◽  
Jea Myoung Noh

This paper presents the results of an experimental study on the compressive strength, splitting tensile strength and modulus of elasticity characteristics of high performance concrete. These tests were carried out to evaluate the mechanical properties of HPC for up to 7 and 28 days. Mixtures were prepared with water to binder ratio of 0.40. Two mixtures were containing fly ash at 25%, silica fume at 5% cement replacement, respectively. Another mixture was contains blast furnace slag and fly ash at 25%. Three standard 100¥a200 cylinder specimens were prepared. HPC showed improvement in the compressive strength and splitting tensile strength when ordinary Portland cement was replaced with silica fume. Compare with specimens FA25 and BS25FA25, specimen SF5 showed much more modulus of elasticity. It shows that the use of the blast furnace slag of 25% and fly ash of 25% cement replacement has caused a small increase in compressive strength and splitting tensile strength and modulus of elasticity compared to the only use of fly ash of 25% at 28days. The results indicated that the use of blast furnace slag or silica fume provided the good performance compare to fly ash when the mechanical properties of the high performance concretes were taken into account.


2013 ◽  
Vol 634-638 ◽  
pp. 2716-2719
Author(s):  
Wan Shin Park ◽  
Sung Ho Cho ◽  
Song Hui Yun ◽  
Jeong Eun Kim ◽  
Do Gyeum Kim ◽  
...  

The characteristics of the compressive strength and splitting tensile strength according to replacement ratio of the blast furnace slag were found in this study. The blast furnace slag was utilizes as the concrete mix-material and then, these results were compared with the basis presented in the international standards. In this study, cylinder made of concrete with water/binder ratio 0.34 and blast furnace slag replacement rate of 10%, 30%, 50%, and 70% were prepared to measure the compressive strength and spiting tensile strength. Test results indicate that The 28 days and 91 days compressive strength is affected by blast furnace slag replacement except specimen BS30 and the splitting tensile strength in specimen BS series is slightly larger than that of OPC except specimen BS 30.


2013 ◽  
Vol 859 ◽  
pp. 52-55 ◽  
Author(s):  
Yong Qiang Ma

A great deal of experiments have been carried out in this study to reveal the effect of the water-binder ratio and fly ash content on the workability and strengths of GHPC (green high performance concrete). The workability of GHPC was evaluated by slump and slump flow. The strengths include compressive strength and splitting tensile strength. The results indicate that the increase of water-binder ratio can improve the workability of GHPC, however the strengths of GHPC were decreased with the increase of water-binder ratio. When the fly ash content is lower than 40%, the increase in fly ash content has positive effect on workability of GHPC, while the workability begins to decrease after the fly ash content is more than 40%. The addition of fly ash in GHPC has adverse effect on the strengths, and there is a tendency of decrease in the compressive strength and splitting tensile strength of GHPC with the increase of fly ash content.


Author(s):  
Maxim MARCHENKO ◽  
Igor CHILIN ◽  
Nikita SELYUTIN

The article presents examples of the use of ultra-high performance fiber reinforced concrete for load-bearing structures in Russia. Using this material with limits of compressive strength 150 MPa, flexural tensile strength 21 MPa, tensile strength 8.5 MPa, external post-tensioned structures of bridges and tanks are made instead of common solution with the steel anchors. Full-scale tests of anchors were carried out, which did not reveal signs of deformations and destruction of elements during the tension of strands, at the level of design and ultimate loads - before strands rupture. It was concluded that it is advisable to replace steel anchors with anchors from the material, which, with high strength characteristics, has ultra-low permeability and high frost resistance corresponding to the F21000 class. The estimated economic effect of such a replacement is determined by the reduced cost of these elements of structures made of ultra-high performance fiber reinforced concrete in comparison with steel.


2013 ◽  
Vol 372 ◽  
pp. 231-234
Author(s):  
Jeong Eun Kim ◽  
Wan Shin Park ◽  
Nam Yong Eom ◽  
Sun Woong Kim ◽  
Do Gyeum Kim ◽  
...  

In this study, some experimental investigations on the development of mechanical properties with age of high performance concrete (HPC) incorporated with blast furnace slag with fly ash or silica fume have been reported. Four different blended HPC were prepared in 0.40 water-binder ratio. At every four mixtures, the compressive strength, splitting tensile strength and modulus of elasticity at 7 and 28 days have been observed for HPC developments. Consequently, only replacement of silica fume significantly increases the mechanical properties in terms of compressive strength, splitting tensile strength and modulus of elasticity.


2009 ◽  
Vol 405-406 ◽  
pp. 212-218
Author(s):  
Jin Zha ◽  
Bei Xing Li ◽  
Jin Hui Li ◽  
He Gao ◽  
Gong Cui

This paper investigated the mechanical properties, workability, autogenous shrinkage, drying shrinkage and durability of the high performance combined aggregate concrete with the coarse aggregate replaced by the lightweight aggregate in the volume fraction from 0% to 50%. The results demonstrated that the fresh concrete with the lightweight aggregate volume fraction of 10% and 30% had good workability, but degrade with a high volume fraction of 50 %. The hardened concrete with 10% and 30% lightweight aggregate replacement had similar compressive strength and splitting tensile strength comparing to the reference concrete without adding lightweight aggregate. The concrete with 50% lightweight aggregate replacement showed decreased compressive strength and splitting tensile strength. The concrete adding lightweight aggregate exhibited less autogenous shrinkage and drying shrinkage than the reference concrete without adding lightweight aggregate. The autogenous shrinkage and drying shrinkage increased with the increasing lightweight aggregate volume fraction. The concrete containing lightweight aggregate showed good durability after 200 freezing and thawing cycles, but the chloride permeability efficiency of concrete decreased.


2014 ◽  
Vol 584-586 ◽  
pp. 1509-1513
Author(s):  
Nan Zhang ◽  
Juan Liao ◽  
Tao Zhang ◽  
Wen Zhan Ji ◽  
Bao Hua Wang ◽  
...  

The effect of very low temperature on high performance concrete (HPC) mechanical properties is studied by using a reasonable testing method. The results show that the compressive strengths of concrete are increasing with lower temperatures. Fly ash (FA), compared to ground granulated blast-furnace slag (GGBFS), is positive to the compressive strength increasing at low temperature. The splitting tensile strengths of concrete appear a maximum at-40°C~-80°C. The compound replacement by GGBFS and FA makes the splitting tensile strength present the extreme value at higher temperature. At very low temperature, the single or compound replacement by mineral admixtures can result in the difference of the relationship between compressive strength and splitting tensile strength, and the degradation of concrete subjected to cold-thermal shocks.


2010 ◽  
Vol 168-170 ◽  
pp. 2044-2048
Author(s):  
Wen Li Li ◽  
Wen Ge Chai ◽  
Cheng Yi ◽  
Yan Li Gao ◽  
Zhao Guang Li

In this paper, high-quality mineral admixtures and superplasticizer double mixing technology is used to produce high performance recycled concert (HPRC), and then steel fibers are used to modify the characteristics of HPRAC. The compressive strength, splitting tensile strength, ultimate bending load and fracture energy of HPRC with different content of steel fiber. Experiments suggest that with the increase of steel fiber content, the compressive strength doesn’t change too much, but the splitting tensile strength, ultimate bending load and facture energy increase dramatically. Therefore it can be concluded that increasing the content of steel fiber properly can improve the ductility and resistance to crack propagation of HPRC and enhance the ultimate load of HPRC bending member.


2020 ◽  
Vol 6 (9) ◽  
pp. 1798-1808
Author(s):  
Akram Obeed Kadhum ◽  
Haider M. Owaid

The aim of this research is to investigate the effect of pozzolanic materials and nano particles on improve the strength characteristic by the properties of a self-compacting high-performance concrete that includes calcined clay with nano lime. In this study, two blends systems are worked on, they are the binary and the ternary systems. For binary mixtures, test samples were prepared from 5% CC, 10% CC, 15% CC and 3% NL by partial replacement of the cement weight. While ternary mixtures, samples were prepared from 5% CC 3% NL, 10% CC 3% NL and 15% CC 3% NL by partial substitution of cement weight. The tests conducted on mixes are fresh tests like slump flow diameter, V-funnel, L-box, and segregation resistance. The compressive strength test was determined at 7, 28 and 56 days. While splitting tensile strength tests at 7 and 28 days from the SCHPC produced in the study. It was concluded that the replacement of CC and NL in SCHPC binary mixes reduced the fresh results enough for SCHPC production and gave a general improvement in the compressive strength and splitting tensile strength properties of the SCHPC mixture. SCHPC with 10% CC partial replacement of cement showed higher values of compressive and splitting tensile strength, compared to the reference mixture of SCHPC for all days, thus it was considered the best. Whereas, the strength of the concrete mixtures in the ternary cement mixtures was better than the strength of the mixing and control mortar systems for the same replacement levels in 7 , 28 and 56 days.


2015 ◽  
Vol 1115 ◽  
pp. 182-187 ◽  
Author(s):  
Siti Asmahani Saad ◽  
Farah Nora Aznieta Abdul Aziz ◽  
Maisarah Ali

Additional of fiber in concrete creates fiber reinforced concrete (FRC) with an improvement of the mechanical properties of the concrete. However, fiber incorporation in FRC is limited to 2% to allow normal mixing procedure. To address this issue, high performance fiber reinforced concrete (HPFRC) is introduced and it is relatively new in construction industry. Since very limited information on its capacity in tropical climate condition exposure, this research focuses on investigation of compressive strength and microstructure properties of the produced concrete in tropical climate condition. In order to complete this research, grade 80 cement slurry is used with 3%, 4% and 5% hooked-end steel fiber. Total numbers of 56 samples which are divided into 4 sets and exposed to two different curing methods namely water curing method and steam curing method at 80°C. Out of the 4 sets, 2 sets are exposed to tropical climate condition using climatic chamber at 80% relative humidity (RH) and constant temperature of 35°C for 30 days. Compression and ultrasonic pulse velocity (UPV) tests are carried out at 28 days to identify its strength as well as integrity of the concrete produced. Scanning electron microscopy (SEM) analysis is done to ascertain the microstructure properties of HPFRC. The highest compressive strength of 152.2 MPa was recorded for steam curing samples after exposed to tropical climate condition for 30 days with 5% steel fiber volume.


Sign in / Sign up

Export Citation Format

Share Document