scholarly journals Influence of Low-Pressure Treatment on the Morphological and Compositional Stability of Microscopic Ettringite

Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2720
Author(s):  
Patrick A. Kißling ◽  
Franziska Lübkemann ◽  
Tabea von Bronk ◽  
Dario Cotardo ◽  
Lei Lei ◽  
...  

The impact of low-pressure treatment on the crystal structure, morphology, and chemical composition of ettringite, due to their major importance with respect to processability (i.a., drying conditions) and to the analysis of ettringite-containing samples, is examined utilizing X-ray diffraction, thermogravimetric analysis, Raman spectroscopy, and environmental scanning electron microscopy. Synthetic ettringite was treated for various durations (5 min up to 72 h) and at two different levels of low-pressure (4.0 mbar and 60 µbar). Evaluation showed a correlation between the procedural parameters (time and pressure), the chemical composition, and the morphology of ettringite. The experiments reveal that, when exposed to 4 mbar pressure, nearly no changes occur in the ettringite’s morphology, whereas the crystals undergo swelling and slight deformations at very low pressures (60 µbar and 35.3 nbar), which is attributed to the loss of bound water and the partial transformation from ettringite to quicklime, anhydrite, and calcium aluminate. Furthermore, the strongly dehydrated ettringite shows the same morphology.

Author(s):  
Howard S. Kaufman ◽  
Keith D. Lillemoe ◽  
John T. Mastovich ◽  
Henry A. Pitt

Gallstones contain precipitated cholesterol, calcium salts, and proteins. Calcium (Ca) bilirubinate, palmitate, phosphate, and carbonate occurring in gallstones have variable morphologies but characteristic windowless energy dispersive x-ray (EDX) spectra. Previous studies of gallstone microstructure and composition using scanning electron microscopy (SEM) with EDX have been limited to dehydrated samples. In this state, Ca bilirubinates appear as either glassy masses, which predominate in black pigment stones, or as clusters, which are found mostly in cholesterol gallstones. The three polymorphs of Ca carbonate, calcite, vaterite, and aragonite, have been identified in gallstones by x-ray diffraction, however; the morphologies of these crystals vary in the literature. The purpose of this experiment was to study fresh gallstones by environmental SEM (ESEM) to determine if dehydration affects gallstone Ca salt morphology.Gallstones and bile were obtained fresh at cholecystectomy from 6 patients. To prevent dehydration, stones were stored in bile at 37°C. All samples were studied within 4 days of procurement.


2011 ◽  
Vol 43 (1) ◽  
pp. 105-112
Author(s):  
Z.G. Zhang ◽  
X.F. Wang ◽  
Q.Q. Tian

Bismuth silicate micro-crystals with grain array structure were prepared by sintering method under atmosphere pressure. The samples were characterized for structural and surface morphological properties by X-ray diffraction (XRD) and Environmental scanning electron microscopy (ESEM). The result shows that stable grain arrays grow by iterative mode. If a stable grain array eliminates, a new stable grain array will generate. In a stable parent array, an offspring array may generate after the corresponding partial elimination of its parent array. If one part of an offspring array stops growing, it will be as a new parent array, and then its offspring grain array will create. The sum of the lengths of an offspring array and the corresponding eliminated part of its parent array is equal to the length of the next eliminated part of its parent array. It means the growth rate of an offspring array is equal to that of the corresponding survived part of its parent array. There is a highly correlation between grain array length and average grain line spacing. It means that larger average grain line spacing corresponds to the stable grain array with lager length. When average grain line spacing increases 1?m, the corresponding array length will increase approximately 7.6?m.


2015 ◽  
Vol 14 (3) ◽  
pp. 517-526 ◽  
Author(s):  
Susanne Douglas ◽  
Meredith E. Perry ◽  
William J. Abbey ◽  
Zuki Tanaka ◽  
Bin Chen ◽  
...  

AbstractThe Proterozoic carbonate stromatolites of the Pahrump Group from the Crystal Spring formation exhibit interesting layering patterns. In continuous vertical formations, there are sections of chevron-shaped stromatolites alternating with sections of simple horizontal layering. This apparent cycle of stromatolite formation and lack of formation repeats several times over a vertical distance of at least 30 m at the locality investigated. Small representative samples from each layer were taken and analysed using X-ray diffraction (XRD), X-ray fluorescence (XRF), environmental scanning electron microscopy – energy dispersive X-ray spectrometry, and were optically analysed in thin section. Optical and spectroscopic analyses of stromatolite and of non-stromatolite samples were undertaken with the objective of determining the differences between them. Elemental analysis of samples from within each of the four stromatolite layers and the four intervening layers shows that the two types of layers are chemically and mineralogically distinct. In the layers that contain stromatolites the Ca/Si ratio is high; in layers without stromatolites the Ca/Si ratio is low. In the high Si layers, both K and Al are positively correlated with the presence and levels of Si. This, together with XRD analysis, suggested a high K-feldspar (microcline) content in the non-stromatolitic layers. This variation between these two types of rocks could be due to changes in biological growth rates in an otherwise uniform environment or variations in detrital influx and the resultant impact on biology. The current analysis does not allow us to choose between these two alternatives. A Mars rover would have adequate resolution to image these structures and instrumentation capable of conducting a similar elemental analysis.


2013 ◽  
Vol 743-744 ◽  
pp. 13-19 ◽  
Author(s):  
Jian Qiu Deng ◽  
Zhou Guang Lu ◽  
Chi Yuen Chung ◽  
Zhong Min Wang ◽  
Huai Ying Zhou

Li4Ti5O12thin film anodes were prepared successfully using pulsed laser deposition technique. The thin films were characterized by X-ray diffraction and environmental scanning electron microscopy. The effects of thickness and scan rate on the electrochemical properties of Li4Ti5O12thin film electrodes were discussed in detail. The thin film anodes deliver favorable capacity and excellent cycling performance. The discharge capacity maintains at 141 mAhg-1after 20 cycles at 1C charge-discharge rate for the thin film anodes deposited for 20 minutes. The charge-transfer resistances were also investigated by electrochemical impedance spectroscopy.


2016 ◽  
Vol 848 ◽  
pp. 446-453
Author(s):  
Sheng Liu ◽  
Bei Ying Zhou ◽  
Shi Jia Gu ◽  
Lian Jun Wang ◽  
Wan Jiang ◽  
...  

Two kinds of commercial LED phosphors (green phosphor LuAG:Ce3+ and red phosphor CaAlSiN3:Eu2+) with polymethyl methacrylate (PMMA) powders were mixed to prepare film phosphors with tunable emission peak in photoluminescence spectrum by flat vulcanizing machine under the temperature of 170 oC and pressure of 2 MPa. The physical phase, surface morphology, transmittance, luminescence spectra of samples were characterized by means of X-ray diffraction (XRD), Environmental scanning electron microscopy (ESEM), Ultraviolet-Visible (UV-Vis) spectrophotometry and Fluorescence spectrometer. The results show that the film phosphors phase was consistent with raw phosphors, phosphor particles were uniformly distributed, and fluorescence spectra with different proportions of phosphors in different position can be adjusted. Tested by HSP 3000 spectrum analyzer, the white LEDs fabricated by blue chip and composite film phosphor containing 5 wt% green phosphor and 1.5 wt.% red phosphor, which refers to the remote excitation technique, possessed color coordinate of (0.3715, 0.3280) and color rendering index (CRI) of 87 when it was driven at power of 36 V/140 mA, reaching the international advanced level.


Author(s):  
Oleksandr Babachenko ◽  
Ganna Kononenko ◽  
Katerina Domina ◽  
Rostislav Podolskyi ◽  
Olena Safronova

A review of research in the field of modeling experiments on heat treatment and pressure treatment of metal and the impact on the physical and mechanical properties of steel with a chemical composition of 0.59% C, 0.31% Si, 0.73% Mn. A mathematical model for calculating the physical and mechanical properties of steel in the process of hot plastic deformation has been developed and prospects for further development of research in this area have been identified. As a result of modeling, the following functions were obtained: the amount of deformation in the direction of the applied force divided by the initial length of the material. The coefficient of elongation of the material with the actual chemical composition at a temperature of 1250 ± 10 ° C, which was 0.32. When comparing the values of the load that was applied to the GPA in the laboratory and the results of calculations using the developed model, it was found that they have close values of about 45 MPa. This confirms the adequacy of the obtained model.A review of research in the field of modeling experiments on heat treatment and pressure treatment of metal and the impact on the physical and mechanical properties of steel with a chemical composition of 0.59% C, 0.31% Si, 0.73% Mn. A mathematical model for calculating the physical and mechanical properties of steel in the process of hot plastic deformation has been developed and prospects for further development of research in this area have been identified. As a result of modeling, the following functions were obtained: the amount of deformation in the direction of the applied force divided by the initial length of the material. The coefficient of elongation of the material with the actual chemical composition at a temperature of 1250 ± 10 ° C, which was 0.32. When comparing the values of the load that was applied to the GPA in the laboratory and the results of calculations using the developed model, it was found that they have close values of about 45 MPa. This confirms the adequacy of the obtained model.


2020 ◽  
Vol 10 (4) ◽  
pp. 310-318
Author(s):  
Sara Bouhazma ◽  
Imane Adouar ◽  
Sanae Chajri ◽  
Smaiel Herradi ◽  
Mohamed Khaldi ◽  
...  

Bioactive powders of the binary SiO2-CaO, ternary SiO2-CaO-P2O5 and quaternary systems SiO2-CaO-P2O5-Na2O/Mg2O were synthesized using a sol-gel route. The gels were converted into bioglasses powders by heat treatments at the temperature of 700°C. The resulting materials were characterized by X-ray diffraction (XRD), Fourier Transform Infrared spectroscopy (FTIR), Environmental Scanning Electron Microscopy (ESEM) and in vitro bioactivity in acellular Simulated Body Fluid (SBF). The in vitro tests showed that the samples had good apatite-forming ability. Glasses doped with sodium and magnesium show good results in terms of bioactivity and mechanical properties. The results showed that the quaternary glass SiO2-CaO-P2O5-Na2O containing Na is the most bioactive, only 6 hours after its immersion in SBF; a layer of hydroxycarbonated apatite (HAC) was deposited on the glass and compressive strength of up to 233.08 MPa with a porosity of 11.02%, due to the presence of the Na2Ca2Si3O9 phase. Magnesium also affects bioactivity because it has improved from binary to ternary to quaternary doped with magnesium, bioactive from 12h of contact with the SBF.


Energies ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 2094 ◽  
Author(s):  
Yujie Yuan ◽  
Reza Rezaee

Porosity and pore size distribution (PSD) are essential petrophysical parameters controlling permeability and storage capacity in shale gas reservoirs. Various techniques to assess pore structure have been introduced; nevertheless, discrepancies and inconsistencies exist between each of them. This study compares the porosity and PSD in two different shale formations, i.e., the clay-rich Permian Carynginia Formation in the Perth Basin, Western Australia, and the clay-poor Monterey Formation in San Joaquin Basin, USA. Porosity and PSD have been interpreted based on nuclear magnetic resonance (NMR), low-pressure N2 gas adsorption (LP-N2-GA), mercury intrusion capillary pressure (MICP) and helium expansion porosimetry. The results highlight NMR with the advantage of detecting the full-scaled size of pores that are not accessible by MICP, and the ineffective/closed pores occupied by clay bound water (CBW) that are not approachable by other penetration techniques (e.g., helium expansion, low-pressure gas adsorption and MICP). The NMR porosity is largely discrepant with the helium porosity and the MICP porosity in clay-rich Carynginia shales, but a high consistency is displayed in clay-poor Monterey shales, implying the impact of clay contents on the distinction of shale pore structure interpretations between different measurements. Further, the CBW, which is calculated by subtracting the measured effective porosity from total porosity, presents a good linear correlation with the clay content (R2 = 0.76), implying that our correlated equation is adaptable to estimate the CBW in shale formations with the dominant clay type of illite.


2015 ◽  
Vol 10 (1) ◽  
pp. 155892501501000 ◽  
Author(s):  
Fengyan Li ◽  
Hongjun Fu

Lotus fibers are pulled from different period of lotus root. Alkaline was used as degumming agent to remove non-cellulose impurities of lotus fibers. Environmental scanning electron microscopy (ESEM), X-ray diffraction (XRD) and FTIR were used to characterize surface morphology and microscopic structure of lotus fibers before and after degumming. The effect of alkaline degumming on tensile properties of lotus fibers is investigated. The results show that impurities remove, hydrogen bond rupture, and crystallinity of partly armorphous chain occur during alkaline degumming. All of these changes play roles in influencing fiber tensile breaking force and elongation at break.


2015 ◽  
Vol 821-823 ◽  
pp. 181-184 ◽  
Author(s):  
Ji Chao Hu ◽  
Yu Ming Zhang ◽  
Ren Xu Jia ◽  
Yue Hu Wang ◽  
Bin Xin

Step-bunching and triangular defects are significant problems in achieving higher growth rate 4H-SiC epilayers in a horizontal hot wall CVD reactor using a standard non-chlorinated chemistry of silane-propane-hydrogen on 4°off-axis substrates. In this work, the impact of growth pressure on generation of step-bunching and triangular defects and the correlations between the surface roughness and the formation of defects were investigated. It has been found that the impact of growth pressure on concentration of the triangle defects and surface roughness is obviously different. An overall reduction of defects was observed with decreasing growth pressure while the surface roughness increased. The increased adatom surface mobility in low pressure range and minimization of surface free energy are the main reasons for the phenomenon above. High Resolution X-Ray Diffraction (HRXRD) indicated that the structural quality of 4H-SiC epilayers performed at low pressure was higher than that obtained at high pressure.


Sign in / Sign up

Export Citation Format

Share Document