Reliability of GDS-RCA Resonant Column on Routine Experimentation

2013 ◽  
Vol 477-478 ◽  
pp. 439-442
Author(s):  
Xiao Fei Li ◽  
Rui Sun

The shear modulus and damping ratio of soil are important factors for soil layer seismic response analysis, people have done a lot of research. Currently, the method to measure soil shear modulus and damping ratio have bending element test method, resonant column test, dynamic triaxial test and so on. This article describes the British GDS company developed a new resonant column GDS-RCA's main features, technical indicators and working principle, compared the IEM original GZ-1 resonant column test results with GDS-RCA resonant column test results, the compared results are as follows: both damping ratio results in somewhat different, but in 10-6-10-4 low strain shear modulus ratio between the range of test results are consistent, GDS-RCA resonant column testing machine can by low-frequency torsional mode, expand the soil strain measurement extended to 10-6-10-2, and the small strain to large strain test results are in good connection.

1996 ◽  
Vol 33 (3) ◽  
pp. 510-514 ◽  
Author(s):  
M O Al-Hunaidi ◽  
P A Chen ◽  
J H Rainer ◽  
M Tremblay

The resonant-column test method was used in this study to determine the dynamic shear moduli and damping ratios of frozen and unfrozen soil samples. Naturally frozen soil specimens were obtained in-situ during the winter. A series of tests were carried out on the frozen soil specimens in a cold room at –9°C. The same specimens, after allowing them to thaw, were then tested at room temperature. Test results show that at low-amplitude shear stains the damping ratio of frozen soil specimens is roughly twice that of unfrozen samples. In addition, the dynamic shear modulus for soil specimens while frozen is significantly greater (30 or 50 times) than that of unfrozen specimens. These results provide a basis for explaining an observation that bus-induced vibrations in buildings while the top soil is frozen in winter are about one-half those induced while the soil is not frozen. Key words: resonant-column test, shear modulus, damping ratio, frozen soil, ground vibration.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2743
Author(s):  
Seongnoh Ahn ◽  
Jae-Eun Ryou ◽  
Kwangkuk Ahn ◽  
Changho Lee ◽  
Jun-Dae Lee ◽  
...  

Ground reinforcement is a method used to reduce the damage caused by earthquakes. Usually, cement-based reinforcement methods are used because they are inexpensive and show excellent performance. Recently, however, reinforcement methods using eco-friendly materials have been proposed due to environmental issues. In this study, the cement reinforcement method and the biopolymer reinforcement method using sodium alginate were compared. The dynamic properties of the reinforced ground, including shear modulus and damping ratio, were measured through a resonant-column test. Also, the viscosity of sodium alginate solution, which is a non-Newtonian fluid, was also explored and found to increase with concentration. The maximum shear modulus and minimum damping ratio increased, and the linear range of the shear modulus curve decreased, when cement and sodium alginate solution were mixed. Addition of biopolymer showed similar reinforcing effect in a lesser amount of additive compared to the cement-reinforced ground, but the effect decreased above a certain viscosity because the biopolymer solution was not homogeneously distributed. This was examined through a shear-failure-mode test.


2011 ◽  
Vol 243-249 ◽  
pp. 2050-2054 ◽  
Author(s):  
Pei Hsun Tsai ◽  
Sheng Huoo Ni

In this paper the dynamic property (shear modulus and damping ratio) of cement-stabilized soil is studied with using the resonant column test. The amount of cement admixed, the magnitude of confining pressure, and shearing strain amplitude are the parameters considered. Test results show that the maximum shear modulus of cement-stabilized soil increases with increasing confining pressure, the minimum damping ratio decreases with increasing confining pressure. The shear modulus of cement-stabilized soil decreases with increasing shearing strain while the damping ratio increases with increasing shearing strain. In the paper the relationship of shear modulus versus shearing strain is fitted into the Ramberg-Osgood equations using regression analysis.


Author(s):  
Xiaobo Yu ◽  
Rui Sun ◽  
Xiaoming Yuan ◽  
Zhuoshi Chen ◽  
Jiuqi Zhang

The shear modulus and damping ratio of frozen soil are thebasic parameters of its dynamic properties and are often testedwith the dynamic triaxial apparatus. However, the resonantcolumn apparatus is more suitable for the testing at the microstrainlevel. A resonant column apparatus was here used toidentify the varying modes with negative temperature of theinitial shear modulus, modulus ratio, and damping ratio of frozensilt. Correction factor curves indicate that the temperaturehas a great effect on the shear modulus and damping ratio offrozen silt. The curves also show that, within the sensitive stage,the temperature significantly affects the modulus and damping.Within the insensitive stage, the modulus and dampingwere insensitive to the temperature. The experimental resultsand analysis given here provide support for improving seismicdesign codes and offer reasonable parameters for seismicresponse analysis in engineering construction in cold regions.


2014 ◽  
Vol 535 ◽  
pp. 764-767
Author(s):  
Qian Feng ◽  
Heng Li ◽  
Yi Zhang

In order to obtain the dynamic response characteristics of soil parameters, dynamic triaxial test is a commonly used method, but the project generally use the resonant column test instead. We selected a typical clay in Wuhan were carried out dynamic triaxial and resonant column test, get the relationship of the dynamic shear modulus ratio and dynamic strain under different dynamic stress and dynamic relationship with the dynamic strain damping ratio, respectively. Comparative analysis showed that the resonant column test obtained smaller results than the dynamic triaxial test.


2015 ◽  
Vol 775 ◽  
pp. 283-286 ◽  
Author(s):  
Kostas Senetakis ◽  
Anastasios Anastasiadis

Damping of geo-materials in resonant column test is commonly evaluated with two alternative experimental methods; during a steady-state vibration (SSV) and during free-vibration decay (FVD). Damping is an important dynamic property necessary to capture the complete behavior of soils. In the study, representative test results on crushed rock are discussed with a focus on material damping derivations along with stiffness degradation test results derived from torsional resonant column tests. A comparison between material damping derived from the SSV and FVD methods and from small to medium shear strains is presented and discussed. In the first part of the paper, the definition of material damping by means of a closed loop in the shear stress - shear strain plane is presented along with a report on literature data associated with damping of coarse-grained soils and the important factors that control material damping of sands and gravels. In the second part, the materials and experimental techniques of the study are described briefly and the background of determining material damping in a resonant column test is also presented along with the analytical formulae. Finally, in the third part representative test results are given including both stiffness and damping, and a comparison of damping derivations using different methods is also highlighted.


2011 ◽  
Vol 105-107 ◽  
pp. 1426-1432 ◽  
Author(s):  
De Gao Zou ◽  
Tao Gong ◽  
Jing Mao Liu ◽  
Xian Jing Kong

Two of the most important parameters in dynamic analysis involving soils are the dynamic shear modulus and the damping ratio. In this study, a series of tests were performed on gravels. For comparison, some other tests carried out by other researchers were also collected. The test results show that normalized shear modulus and damping ratio vary with the shear strain amplitude, (1) normalized shear modulus decreases with the increase of dynamic shear strain amplitude, and as the confining pressure increases, the test data points move from the low end toward the high end; (2) damping ratio increases with the increase of shear strain amplitude, damping ratio is dependent on confining pressure where an increase in confining pressure decreased damping ratio. According to the test results, a reference formula is proposed to evaluate the maximum dynamic shear modulus, the best-fit curve and standard deviation bounds for the range of data points are also proposed.


2015 ◽  
Vol 775 ◽  
pp. 292-297
Author(s):  
Kostas Senetakis ◽  
Anastasios Anastasiadis

The resonant column method is established as a standard laboratory method for the study of the elastic properties of soils. The study presents low-amplitude resonant column test results on volcanic sands with intra-particle voids. The experiments were performed on dry samples prepared at variable relative densities and tested in torsional mode of vibration. In the first part of the article, the important factors that control the elastic stiffness of uncemented sands are described shortly and recent findings on granular soils dynamic properties are presented briefly. The second part describes the basic features of the resonant column used in the investigation and the materials of the study and in the third part representative results of an extensive experimental testing program on volcanic granular soils are presented and discussed with a focus on comparisons between the elastic stiffness of volcanic and quartz granular soils. The importance of the effect of the presence of intra-particle voids within the particle mass of the volcanic soils is emphasized, which in turn affects markedly the global void ratio of the samples.


Sign in / Sign up

Export Citation Format

Share Document