scholarly journals Influence of the Die Height on the Density of the Briquette Produced from Shredded Logging Residues

Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3698
Author(s):  
Tomasz Nurek ◽  
Arkadiusz Gendek ◽  
Magdalena Dąbrowska

An alternative to plant biomass of various origins are forest logging residues. They differ significantly from other, previously used plant materials. This difference is due to the heterogeneous composition and relatively large size of individual particles. This research on the compaction of this type of shredded material was aimed at determining the influence of the die height on the density and relaxation of briquettes. This parameter is crucial for the proper construction of compaction devices. The measurements were carried out for the same fractional composition of the shredded logging residues, with variable input parameters of the material and process. It was found that the briquette density and relaxation are influenced by the die height, as well as the material moisture content and process temperature. The highest density at maximum compaction pressure (1.40 g·cm–3) was obtained at a moisture content of 16%, temperature of 80 °C, and the lowest die height (195 mm). In the case of the briquette density after ejection from the die, the best results were obtained at the same temperature and die height but at a moisture content of 9%. The tests confirmed that, regardless of the process temperature and material moisture, the briquette density increases as the die height is reduced. The relaxation coefficient of compacted logging residues ranges from 21.7% to 50.1% and depends mainly on the material moisture content and the temperature of the process. The lowest value of the relaxation coefficient (21.7 ± 1.61) was obtained at 9% moisture content, 60 °C temperature, and 220 mm die height.

2013 ◽  
Vol 726-731 ◽  
pp. 3803-3806
Author(s):  
Bing Ru Liu ◽  
Jun Long Yang

In order to revel aboveground biomass of R. soongorica shrub effect on soil moisture and nutrients spatial distribution, and explore mechanism of the changes of soil moisture and nutrients, soil moisture content, pH, soil organic carbon (SOC) and total nitrogen (TN) at three soil layers (0-10cm,10-20cm, and 20-40cm) along five plant biomass gradients of R. soongorica were investigated. The results showed that soil moisture content increased with depth under the same plant biomass, and increased with plant biomass. Soil nutrient properties were evidently influenced with plant biomass, while decreased with depth. SOC and TN were highest in the top soil layer (0-10 cm), but TN of 10-20cm layer has no significant differences (P < 0.05). Moreover, soil nutrient contents were accumulated very slowly. These suggests that the requirement to soil organic matter is not so high and could be adapted well to the desert and barren soil, and the desert plant R. soongorica could be acted as an important species to restore vegetation and ameliorate the eco-environment.


2021 ◽  
Vol 37 (3) ◽  
pp. 491-494
Author(s):  
Jonathan Chiputula ◽  
Emmanuel Ajayi ◽  
Ray Bucklin ◽  
Ann R Blount

HighlightsRye grain compaction was measured for three different moisture contents (8%, 12%, and 16% wet basis) at five different compaction pressures (7, 14, 34, and 55 kPa)Bulk densities were found to be statistically significantly dependent (p &lt; 0.0001) on both the moisture content and applied pressure.Compacted bulk densities increased with increasing applied pressure for all moisture contents.Abstract. Bulk density of agricultural grains is needed to determine the quantity of grain in storage structures and to calculate grain pressures. The objective of this study was to investigate the effects of moisture content and applied pressure on bulk density of rye grain at moisture contents and pressures typical of those seen in storage structures. Rye compaction was measured for three moisture contents (8%, 12%, and 16% wet basis) at four compaction pressures (7, 14, 34, and 55 kPa) using a square box (based on the design used by Thompson and Ross, 1983). Data from the compaction tests were used to calculate the bulk densities for the three moisture contents and four compaction pressures. The bulk densities were found to be significantly dependent (p &lt;0.0001) both on moisture contents and the pressure applied. Bulk densities varied with increasing moisture content as has been observed in similar studies for rye and other agricultural grains such as wheat and soybeans. These results provide guidance for estimating bulk density of rye in bins and other storage structures. Keywords: Grain compaction, Grain storage, Kernel rearrangement, Kernel elasticity.


2020 ◽  
Vol 169 ◽  
pp. 02006
Author(s):  
Gennady Kalabin ◽  
Vasilii Vasil’ev ◽  
Vasilii Ivlev ◽  
Vasilii Babkin

Environmental monitoring and assessment of the prospects for extracting biologically active substances (BAS) from various types of plant biomass requires the development of simple and fast methods for measuring their content in raw materials. A new approach for measuring the content of various flavonoids groups in plant raw material using 1H NMR spectroscopy has been developed, which allows to characterize its resource capabilities and study the effects on their composition different environmental factors without complex sample preparation and standard samples.


Energies ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 1859 ◽  
Author(s):  
Jakub Styks ◽  
Marek Wróbel ◽  
Jarosław Frączek ◽  
Adrian Knapczyk

In Poland the use of solid biomass obtained from intentional plantations of energy plants is increasing. This biomass is most often processed into solid fuels. There are growing indications that renewable energy sources, in particular biomass production, will continue to develop, so the better we know the raw material, the more effectively we will be able to use it. The results of tests that determine the impact of compaction pressure on selected quality parameters of pellets made from selected biomass types are presented. Material from plants such as Giant miscanthus (Miscanthus × giganteus Greef et Deu), Cup plant (Silphium perfoliatum L.), Virginia mallow (Sida hermaphrodita (L.) Rusby) was studied. The compaction process was carried out using the SIRIO P400 hydraulic press with a closed chamber with a diameter of 12 mm. Samples were made in four pressures: 131; 196; 262; 327 MPa and three moisture levels: 8%, 11%, 14%. It was found that with increasing compaction pressure and moisture content up to a certain point, the density and durability of the pellets also increased. Each of the materials is characterized by a specific course of changes in the parameters tested.


2020 ◽  
Vol 66 (1) ◽  
pp. 3-11 ◽  
Author(s):  
Vahur Kurvits ◽  
Katri Ots ◽  
Ahto Kangur ◽  
Henn Korjus ◽  
Peeter Muiste

AbstractThe properties of biomass-based fuel and combustion tests showed that logging residues are promising renewable energy sources. The data used in this study were collected from four clear-felling areas in Järvselja Training and Experimental Forest Centre, Southeast Estonia in 2013–2014. Logging was carried out by harvesters in Scots pine (Pinus sylvestris L.), Norway spruce (Picea abies [L.] Karst.), silver birch (Betula pendula Roth.) and black alder (Alnus glutinosa L. Gaertn.) dominated stands with a small admixture of other tree species according to the cut-to-length method and logging residues were placed in heaps. The aim of this research is to assess different characteristics of logging residues (quantity, moisture content, energetic potential, ash content and amount) in clear-felling areas. The highest load of slash was measured on the birch dominated study site, where the dry weight of the logging residues was 29 t ha−1. Only the branch fraction moisture content on the black alder dominated site (35.4%) was clearly different from respective values on other sites (21.6–25.4%). The highest calorific value of the residues was assessed with the residues from the birch dominated site, where in moist sample it was 365 GJ ha−1 and in dry matter 585 GJ ha−1. The heating value of the fresh residues is highest in coniferous trees. The highest ash content in branch segments was registered for the black alder dominated site. Järvselja data indicate higher quality in conifer dominated sites, yet a higher load of logging residues in broadleaf dominated stands.


2018 ◽  
Vol 38 (2) ◽  
pp. 167
Author(s):  
Lince Mukkun ◽  
Herianus J.D. Lalel ◽  
Yuliana Tandirubak

Maize is one of the important staple foods for people in Timor, East Nusa Tenggara Province, Indonesia. Subsistent farmers store the maize for their own consumption until the next harvest season, for seed and feed.  However, high initial water content of the kernel due to improper drying prior storage initiate serious damage and losses during the maize storage.  High water content promotes the growth of fungi and insects, and increase respiration rate, resulting in rapid deterioration of maize. The purpose of this study was to determine the initial moisture content that might minimize damage and losses of maize in the farmers’ storage, and to study the effects of some plant materials that are used to smoke corns before storage. The experiment was initiated by sun-drying the harvested corncobs for 0, 2, 4, 6, 8, and 10 days (6 hours a day). This experiment was designed using Completely Randomized Design with 6 treatments and 3 replications. Dried corncobs were stored in the farmer’s storage for 4 months. The effects of maize kernels’ initial water content on the development of water content in kernels; the percentage of damaged kernels; and the species of pathogen and insects were investigated during storage with 2-week intervals.  The results demonstrated that drying the corncobs prior storage for 10 days, resulting in 12.96% of water content, significantly decreased the percentage of seed damage to 6.5%, as compared to without drying process which resulted  in 63%.  Aspergillus flavus, Fusarium sp., and Penicillium sp were found to be the main pathogen during storage.  There are no insect pests found during the storage. 


Sign in / Sign up

Export Citation Format

Share Document