scholarly journals Semi-Empirical Prediction of Turned Surface Residual Stress for Inconel 718 Grounded in Experiments and Finite Element Simulations

Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3937
Author(s):  
Huachen Peng ◽  
Wencheng Tang ◽  
Yan Xing ◽  
Xin Zhou

The surface residual stress after machining, especially for finishing, has a vital influence on the shape stability and fatigue life of components. The current study focuses on proposing an original empirical equation to predict turned surface residual stress for Inconel 718 material, taking tool parameters into consideration. The tool cutting-edge angle, rake angle, and inclination angle are introduced for the first time in the equation based on the Inconel 718 material turning experiments and finite element simulations. In this study, the reliability of simulation parameters’ setting is firstly calibrated by comparing the residual stresses and chips of the experiments and simulations. The changing trends of turned forces, temperatures of lathe tool nose, and surface residual stress with turning parameters are analyzed. Then, the predictive equation of surface residual stress is proposed considering relationships between the back-rake angle, the side-rake angle, and the tool cutting-edge angle, rake angle, and inclination angle. Moreover, the genetic algorithm optimizes the objective function to obtain the undetermined coefficients in the prediction equation. Finally, the predicted accuracy of the surface residual stress is proven by comparing the experimental, simulation, and prediction values. The results indicate that the predictive equation of surface residual stress has a good accuracy in predicting turned surface residual stress for Inconel 718 materials. The correlation coefficient, R, and absolute average error between the predicted and the simulated value are 0.9624 and 13.40%, respectively. In the range of cutting parameters studied and experimental errors, this study provides an accurate predictive equation of turned surface residual stress for Inconel 718 materials.

2009 ◽  
Vol 24 (S1) ◽  
pp. S22-S25
Author(s):  
Y. B. Guo ◽  
S. Anurag

Hard turning, i.e., turning hardened steels, may produce the unique “hook” shaped residual stress (RS) profile characterized by surface compressive RS and subsurface maximum compressive RS. However, the formation mechanism of the unique RS profile is not yet known. In this study, a novel hybrid finite element modeling approach based on thermal-mechanical coupling and internal state variable plasticity model has been developed to predict the unique RS profile patterns by hard turning AISI 52100 steel (62 HRc). The most important controlling factor for the unique characteristics of residual stress profiles has been identified. The transition of maximum residual stress at the surface to the subsurface has been recovered by controlling the plowed depth. The predicted characteristics of residual stress profiles favorably agree with the measured ones. In addition, friction coefficient only affects the magnitude of surface residual stress but not the basic shape of residual stress profiles.


Author(s):  
Sai Kosaraju ◽  
Xin Zhao

Abstract A two-dimensional finite element model is developed to simulate the interaction between metal samples and laser-induced shock waves. Multiple laser impacts are applied at each location to increase plastically affected depth and compressive stress. The in-depth and surface residual stress profiles are analyzed at various repetition rates and spot sizes. It is found that the residual stress is not sensitive to repetition rate until it reaches a very high level. At extremely high repetition rate (100 MHz), the delay between two shock waves is even shorter than their duration, and there will be shock wave superposition. It is revealed that the interaction of metal with shock wave is significantly different, leading to a different residual stress profile. Stronger residual stress with deeper distribution will be obtained comparing with lower repetition rate cases. The effect of repetition rate at different spot sizes is also studied. It is found that with larger laser spot, the peak compressive residual stress decreases but the distribution is deeper at extremely high repetition rates.


Materials ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3121 ◽  
Author(s):  
Xiaoli Qiu ◽  
Xianqiang Cheng ◽  
Penghao Dong ◽  
Huachen Peng ◽  
Yan Xing ◽  
...  

The Johnson-Cook (J-C) constitutive model, including five material constants (A, B, n, C, m), and the Coulomb friction coefficient (μ) are critical preprocessed data in machining simulations. Before they become reliable preprocessed data, investigating these parameters’ effect on simulation results benefits parameter-selecting. This paper aims to investigate the different influence of five settings of the J-C constitutive equation and Coulomb friction coefficient on the turning simulation results of Inconel 718 under low-high cutting conditions, including residual stress, chip morphology, cutting force and temperature. A three-dimensional (3-D) finite element model was built, meanwhile, the reliability of the model was verified by comparing the experiment with the simulation. Sensitivity analysis of J-C parameters and friction coefficient on simulation results at low-high cutting conditions was carried out by the hybrid orthogonal test. The results demonstrate that the simulation accuracy of Inconel 718 is more susceptible to strain hardening and thermal softening in the J-C constitutive model. The friction coefficient only has significant effects on axial and radial forces in the high cutting condition. The influences of the coefficient A, n, and m on the residual stress, chip thickness, cutting force and temperature are especially significant. As the cutting parameters increase, the effect of the three coefficients will change visibly. This paper provides direction for controlling simulation results through the adjustment of the J-C constitutive model of Inconel 718 and the friction coefficient.


2008 ◽  
Vol 375-376 ◽  
pp. 480-484 ◽  
Author(s):  
Guang Xiu Zhang ◽  
Bin Lin ◽  
Zhen Peng Shi

The generation and distribution of workpiece surface and sub-surface residual stress were predicted through the dynamic finite element simulation of the grinding ceramic process. The base of the simulation is that the thermo elastic-plastic finite element theory and the coupling of grinding forces and temperature were adopted. The results obtained from X-ray diffraction measurement compared well with the values calculated from theory. The correlation between grinding parameters and the ceramic residual stresses was investigated. The research results show that the normal grinding force is the primary factor responsible for the generation of residual stress in grinding ceramic. The mechanical effect of the grains is to affect the magnitude, the depth of penetration and the gradient of the residual stresses.


Author(s):  
Karim Serasli ◽  
Harry Coules ◽  
David Smith

Most residual stress measurement methods are limited in terms of their stress and spatial resolution, number of stress tensor components measured and measurement uncertainty. In contrast, finite element simulations of welding processes provide full field distributions of residual stresses, with results dependent on the quality of the input conditions. Measurements and predictions are often not the same, and the true residual stress state is difficult to determine. In this paper both measurements and predictions of residual stresses, created in clad nuclear reactor pressure vessel steels, are made. The measurements are then used as input to a residual stress mapping technique provided within a finite element analysis. The technique is applied iteratively to converge to a balanced solution which is not necessarily unique. However, the technique aids the identification of locations for additional measurements. This is illustrated in the paper. The outcomes from the additional measurements permit more realistic and reliable estimates of the true residual state to be made. The outcomes are compared with the finite element simulations of the welding process and used to determine whether there is a need for additional input to the simulations.


2019 ◽  
Vol 943 ◽  
pp. 20-25
Author(s):  
Ran Zhu ◽  
Yong Kang Zhang ◽  
Gui Fang Sun ◽  
Pu Li

The confined laser shock peening (LSP) is an innovative surface treatment technique designed to improve the fatigue performance of materials by imparting compressive residual stresses into materials. A 3D finite element model was developed to predict the surface residual stress and plastically affected depth of the TC11 titanium alloy after LSP. The modeling procedure consists of two successive explicit analysis steps. The performance of finite element model was verified by comparing simulated results with the experimental data. With the validated finite element model, the influence of the process parameters (LSP path, thickness of the sample, number of impacts) was investigated on the surface residual stress and plastically affected depth of the TC11 titanium alloy after LSP. Some simulated results can be used to mentor the optimization of the process parameters of LSP.


Sign in / Sign up

Export Citation Format

Share Document