scholarly journals Boosting Piezo/Photo-Induced Charge Transfer of CNT/Bi4O5I2 Catalyst for Efficient Ultrasound-Assisted Degradation of Rhodamine B

Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4449
Author(s):  
Yang Wang ◽  
Dongfang Yu ◽  
Yue Liu ◽  
Xin Liu ◽  
Yue Shi

Strain-induced internal electric fields present a significant path to boosting the separation of photoinduced electrons and holes. In addition, piezo-induced positive/negative pairs could be released smoothly, taking advantage of the excellent electroconductibility of some conductors. Herein, the hybrid piezo-photocatalysis is constructed by combining debut piezoelectric nanosheets (Bi4O5I2) and typical conductor multiwalled carbon nanotubes (CNT). The photocatalytic degradation efficiency that the hybrid CNT/Bi4O5I2 exhibits was remarkably increased by more than 2.3 times under ultrasonic vibration, due to the piezo-generated internal electric field. In addition, the transient photocurrent spectroscopy and electrochemical impedance measurement reveal that the CNT coating on Bi4O5I2 enhances the piezo-induced positive/negative migration. Therefore, the piezocatalytic activity of CNT/Bi4O5I2 could be improved by three times, compared with pure Bi4O5I2 nanosheets. Our results may offer promising approaches to sketching efficient piezo-photocatalysis for the full utilization of solar energy or mechanical vibration.

Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 638
Author(s):  
Sanam SaeidNahaei ◽  
Hyun-Jun Jo ◽  
Sang Jo Lee ◽  
Jong Su Kim ◽  
Sang Jun Lee ◽  
...  

For examining the carrier movements through tunnel junction, electrically and optically-biased photoreflectance spectroscopy (EBPR and OBPR) were used to investigate the internal electric field in the InGaP/GaAs dual junction solar cell at room temperature. At InGaP and GaAs, the strength of p-n junction electric fields (Fpn) was perturbed by the external DC bias voltage and CW light intensity for EBPR and OBPR experiments, respectively. Moreover, the Fpn was evaluated using the Fast Fourier Transform (FFT) of the Franz—Keldysh oscillation from PR spectra. In the EBPR, the electric field decreased by increasing the DC bias voltage, which also decreased the potential barrier. In OBPR, when incident CW light is absorbed by the top cell, the decrement of the Fpn in the GaAs cell indicates that the photogenerated carriers are accumulated near the p-n junction. Photogenerated carriers in InGaP can pass through the tunnel junction, and the PR results show the contribution of the modification of the electric field by the photogenerated carriers in each cell. We suggest that PR spectroscopy with optical-bias and electrical-bias could be analyzed using the information of the photogenerated carrier passed through the tunnel junction.


2021 ◽  
Vol 12 (2) ◽  
pp. 77
Author(s):  
Md Sazzad Hosen ◽  
Rahul Gopalakrishnan ◽  
Theodoros Kalogiannis ◽  
Joris Jaguemont ◽  
Joeri Van Mierlo ◽  
...  

In electrified vehicle applications, understanding the battery characteristics is of great importance as it is the state-of-art principal energy source. The key battery parameters can be identified by one of the robust and nondestructive characterization techniques, such as electrochemical impedance spectroscopy (EIS). However, relaxing the battery cell before performing the EIS method is crucial for the characterization results to be standardized. In this study, the three most common and commercially available lithium-ion technologies (NMC/graphite, LFP/graphite, NCA/LTO) are investigated at 15–45 °C temperature, in the range of 20–80% state of charge (SoC) and in fresh and aged state of health (SoH) conditions. The analysis shows that the duration of the relaxation time before impedance measurement has an impact on the battery’s nonlinear behavior. A rest time of 2 h can be proposed, irrespective of battery health condition, considering neutral technology-based impedance measurement. An impedance growth in ohmic and charge transfer characteristics was found, due to aging, and the effect of rest periods was also analyzed from an electrochemical standpoint. This experimental data was fitted to develop an empirical model, which can predict the nonlinear dynamics of lithium technologies with a 4–8% relative error for longer rest time.


1993 ◽  
Vol 297 ◽  
Author(s):  
Qing Gu ◽  
Eric A. Schiff ◽  
Jean Baptiste Chevrier ◽  
Bernard Equer

We have measured the electron drift mobility in a-Si:H at high electric fields (E ≤ 3.6 x 105 V%cm). The a-Si:Hpin structure was prepared at Palaiseau, and incorporated a thickp+ layer to retard high field breakdown. The drift mobility was obtained from transient photocurrent measurements from 1 ns - 1 ms following a laser pulse. Mobility increases as large as a factor of 30 were observed; at 77 K the high field mobility de¬pended exponentially upon field (exp(E/Eu), where E u= 1.1 x 105 V%cm). The same field dependence was observed in the time range 10 ns – 1 μs, indicating that the dispersion parameter change with field was negligible. This latter result appears to exclude hopping in the exponential conduction bandtail as the fundamental transport mechanism in a-Si:H above 77 K; alternate models are briefly discussed.


NANO ◽  
2008 ◽  
Vol 03 (06) ◽  
pp. 461-467 ◽  
Author(s):  
JIAN-SHAN YE ◽  
GUANGQUAN MO ◽  
WEI DE ZHANG ◽  
XIAO LIU ◽  
FWU-SHAN SHEU

Multiwalled carbon nanotubes (MWNTs) can be etched at potentials more positive than 1.7 V versus Ag / AgCl (3 M KCl ) in 0.2 M HNO 3. The electrochemically etched MWNTs show an increase in electrochemical impedance and sluggish electron transfer kinetics, and lose the electrocatalytic effects toward the oxidation of glucose, H 2 O 2, uric acid (UA) and L-ascorbic acid (L-AA). Transmission electron microscope (TEM) images reveal that the nanotube tips are cut off by electrochemical oxidation. This may lead to the degradation of electrocatalytic ability in the MWNTs. Furthermore, the current response after different electrochemically etched cycles shows that the electrocatalytic ability of the MWNTs toward different molecules can be tuned by etched cycles. For example, five etched cycles leads to the total disappearance of the oxidative response to L-AA, with the remaining over 50% of the UA current response in the L-AA and UA mixture. Thus, electrochemical etching is a simple yet novel way to tune the electrocatalytic reactivity and improve the selectivity of the MWNTs.


2021 ◽  
Vol 317 ◽  
pp. 498-505
Author(s):  
Sabrina M. Yahaya ◽  
Mohamad Kamal Harun ◽  
Ismaliza Ismail ◽  
Rosmamuhamadani Ramli

In this study, poly(m-aminophenol) (PMAP) coating was electrochemically synthesized by cyclic voltammetry (CV) on mild steel surface to investigate the effects of its barrier protection within the scope of its electrochemical impedance towards further oxidation of the mild steel substrates. The developed PMAP coating were characterized by Fourier Transform Infrared (FTIR) spectroscopy and Field Emission Scanning Electron Microscopy (FESEM). The barrier resistance ability of PMAP coating towards corrosion of mild steel was determined in 0.5 M aqueous sodium chloride solution (NaCl) at various immersion times by the electrochemical impedance spectroscopy (EIS). The barrier properties were interpreted through impedance measurement using Nyquist and Bode plots. Equivalent electrical circuit models derived from the plots were employed to describe the coating barrier behaviour and performance. Data obtained showed that, the oxidation peak of PMAP coating were observed at potential +1.0 V (Ag/AgCl). The micrograph of FESEM indicates the formation of a dense and continous PMAP coatings. In FTIR analyses, the presence of peak around 1082 cm-1 ascribed to C–O–C etheric linkage which supported the formation of electro polymerized PMAP coating on mild steel surface. EIS measurement revealed that, PMAP coatings experienced a significant drop in total impedance values with time followed by the development of an electrochemical reactions on coating/metal interface, which indicates the gradual degradation of the barrier resistance ability of the PMAP coatings.


1997 ◽  
Vol 488 ◽  
Author(s):  
S. Grossmann ◽  
T. Weyrauch ◽  
W. Haase

AbstractWe report on a method to investigate the inhomogeneous distribution of an electric dc field in multilayer polymer stacks. In situ electroabsorption (EA) measurements are applied in order to estimate the local electric fields in double layer polymer films. The observed time dependent behaviour is compared with a model equivalent circuit. The results indicate that besides the relation of ohmic resistivities and capacities of the different polymer layers in the investigated systems also the influence of the electric properties of polymer/electrode and polymer/polymer interfaces must be considered.


2020 ◽  
Vol 2 (1) ◽  
pp. 47
Author(s):  
Steffen Hadeler ◽  
Sebastian Bengsch ◽  
Maren S. Prediger ◽  
Marc Christopher Wurz

The resolution of commercially available electrocorticography (ECoG) electrodes is limited due to the large electrode spacing and, therefore, allows only a limited identification of the active nerve cell area. This paper describes a novel manufacturing process for neural implants with higher spatial resolution combining micro technological processes and Polydimethylsiloxane (PDMS) as the flexible, biocompatible material. The conductive electrode structure is deposited on a water-soluble transfer substrate by Physical Vapor Deposition (PVD) processes. Subsequently, the structure is contacted. Finally, the transfer to PDMS and dissolution of the transfer substrate takes place. In this way, high-resolution conductive structures can be produced on the PDMS. Transferred gold structures exhibit higher adhesion and conductivity than transferred platinum structures. The adhesion was improved by applying a silica surface modification to the conductive layer prior to transferring. Furthermore, the conductive layer is flexible, conductive up to an elongation of 10%, and resistant to sodium chloride solution, mimicking brain fluids. Using the introduced production process, an ECoG electrode was manufactured and characterized for its functionality in an electrochemical impedance measurement. Furthermore, the electrodes are flexible enough to adapt to different shapes. The transfer process can also be carried out in a three-dimensional mold to produce electrodes tailored to the individual patient.


Sign in / Sign up

Export Citation Format

Share Document