scholarly journals Effect of Artificial Aging on Mechanical and Tribological Properties of CAD/CAM Composite Materials Used in Dentistry

Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4678
Author(s):  
Marcel Firlej ◽  
Daniel Pieniak ◽  
Agata M. Niewczas ◽  
Agata Walczak ◽  
Ivo Domagała ◽  
...  

With easy-to-process 3D printing materials and fast production, the quality of dental services can be improved. In the conventional procedure, the dentist makes temporary crowns directly in the patient’s mouth, e.g., from the most commonly used bis-acrylic composites. Temporary crowns made directly in the office without the use of CAD/CAM are often of inferior quality, which directly results in impaired hygiene, poorer masticatory mechanics, greater deposition of plaque, calculus and sediment, and may adversely affect periodontal and gum health. The mechanical strength, resistance to aging and abrasion of 3D printing materials are higher than those of the soft materials used in conventional methods. This translates into durability. The patient leaves the surgery with a restoration of higher utility quality compared to the conventional method. The objective of the paper was to determine the influence of aging in artificial saliva of AM (additive manufacturing) orthodontic composites on their functional properties. For the purpose of the study, fillings well-known worldwide were selected. These were traditional UV-curable resins (M I, M II, M III, M V) and a hybrid material based on a UV-curable resin (M VI). Samples were stored in artificial saliva at 37 ± 1 °C in a thermal chamber for 6 months. Indentation hardness, frictional tests and sliding wear measurements were conducted. A comparison between various materials was made. Descriptive statistics, degradation coefficients, H2E, Archard wear and specific wear rate were calculated. The Weibull statistical test for indentation hardness was performed and Hertzian contact stresses for the frictional association were calculated for unaged (M I, M II, M III, M V, M VI) and aged (M I AS, M II AS, M III AS, M V AS, M VI AS) samples. M I exhibited the lowest average hardness among the unaged materials, while M III AS had the lowest average hardness among the aged materials. Comparably low hardness was demonstrated by the M I AS material. The coefficient of friction values for the aged samples were found to be higher. The lowest wear value was demonstrated by the M I material. The wear resistance of most of the tested materials deteriorated after aging. The M VI AS material had the highest increase in wear. According to the results provided, not only the chemical composition and structure, but also aging have a great impact on the indentation hardness and wear resistance of the tested orthodontic materials.

Tribologia ◽  
2021 ◽  
Vol 294 (6) ◽  
pp. 7-12
Author(s):  
Henryk Bąkowski ◽  
Zbigniew Krzysiak

The following work presents the results of research about the assessment of tribological properties of plastics used as components in modes of transport. For this purpose, the wear resistance of materials used in 3D printing (PA6CF and ABS), and extrusion moulding (PA) were tested. The tribological research was carried out with the use of the T-05 tester in the roller-block system. The samples in the form of cuboids with a concave rounding of one wall were made on a 3D printer using the FDM method. The counter-sample was a ring made of aluminium alloy subjected to anodizing. The research was carried out under a variable loads, in reciprocating motion, under dry friction conditions. After that the tribological characteristics were assessed. The research and analysis of the results confirmed the possibility of using selected plastics in modes of transport.


Tribologia ◽  
2019 ◽  
Vol 287 (5) ◽  
pp. 87-99
Author(s):  
Wojciech RYNIEWICZ ◽  
Łukasz BOJKO ◽  
Anna M. RYNIEWICZ ◽  
Małgorzata PIHUT ◽  
Paweł PAŁKA

Modern dental prosthetics uses CAD/CAM in the Computer Aided Design (CAD) of substructures and its Computer Aided Manufacturing (CAM) process. The substructure is subject to appropriate veneering, which determines the functional cooperation. The aim of this study is to investigate the friction coefficient and wear resistance of the veneering layers of the substructures of prosthetic structures. The test materials are dedicated veneering layers on substructures made of factory-made CoCr, TiCP, and Ti6Al4V metal fittings as well as the glass-ceramic material LiSi2 and the ceramic ZrO2. The study was conducted on a Roxana Machine Works tribological machine in the ball-and-3discs system in an artificial saliva environment using a Hitachi S3400 scanning microscope. As a reference biomaterial, enamel-dentin discs were used. The tribological processes that take place under chewing conditions in the presence of saliva depend on the properties and technological parameters of the surface layer of the biomaterial wearing out and on the enamel of opposing teeth in contact, which also wears out. They should reproduce the physiological nature of adjustment wear in the stomatognathic system (SS). The determined values of the friction coefficient and wear resistance allowed differences to be indicated in the course of tribological processes, and microscopic analyses confirmed them.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2925
Author(s):  
Ivo Domagała ◽  
Krzysztof Przystupa ◽  
Marcel Firlej ◽  
Daniel Pieniak ◽  
Leszek Gil ◽  
...  

Background: Clinical success depends on the contact strength and wear resistance of medical devices made of polymer materials. The scientific goal resulted from the problem of using different methods of surface evaluation of materials used in the production of orthodontic appliances. The purpose of the work was an experimental comparative assessment of indentation hardness and scratch hardness and the sliding wear of four selected polymeric materials used in the manufacture of orthodontic appliances. Methods: Four commercial materials were compared. Shore hardness tests and a scratch test with a Rockwell indenter were performed. A sliding wear test was performed using the ball-on-disc method. Statistical PCA and correlation analyses were performed. Results: The results of scratch hardness measurements using a contact profilometer correlated with the Shore hardness to a greater extent than measurements made using an optical microscope. PCA showed that Shore hardness explains 45% of the total variance in all the results across the materials. Conclusions: The scratch hardness method allows for a more explicit ranking of orthodontic polymeric materials when measurements are made with a profilometer. The ranking of sliding wear resistance should be made separately.


2020 ◽  
Vol 3 (2) ◽  
pp. 35
Author(s):  
Elisavet-Ioanna Diamantopoulou ◽  
Orfeas-Evanggelos Plastiras ◽  
Petros Mourouzis ◽  
Victoria Samanidou

Bisphenol-A (BPA), bisphenol A glycerolate dimethacrylate (Bis-GMA), triethylene glycol dimethacrylate (TEGDMA), and urethane dimethacrylate (UDMA) are organic monomers that can be released from dental composites into the oral cavity. Over specific concentrations, they can act as endocrine disruptors or cause toxic effects. The purpose of this work is to develop and validate an analytical method to determine BPA, Bis-GMA, TEGDMA, and UDMA monomers released from synthetic dental resins in artificial saliva. The method was validated before its application to new hybrid ceramic materials used in computer-aided design and computer-aided manufacturing (CAD/CAM) restorations to determine the release of monomers in various time intervals (e.g., 24 h, and 7, 14, 30, and 60 days), both in methanolic solutions, as well as in artificial saliva. Chromatographic analysis was performed isocratically on a Perfect Sil Target ODS-3 analytical column (250 mm × 4.6 mm, 5 µm) with CH3CN/H2O, 58/42% v/v as mobile phase within 23 min. The developed method was validated in terms of selectivity, linearity, accuracy, and precision.


2018 ◽  
Vol 141 (3) ◽  
Author(s):  
Qianqian Zhang ◽  
Shanshan Gao ◽  
Chunxu Liu ◽  
Yuqing Lu ◽  
Xin Chen ◽  
...  

The mechanical properties of crystalline phase of glass ceramics are critical. This study aimed to evaluate wear resistance of different crystalline-reinforced dental chairside computer-aided design/computer-aided manufacturing (CAD/CAM) glass ceramics. Materials of feldspar (Vita Mark II, VM), leucite (IPS Empress CAD, EC), lithium disilicate (IPS e.max CAD, EX), lithium disilicate enriched with zirconia (Vita Suprinity, VS), and enamel were embedded, grounded, and polished, respectively. Samples were indented with a Vickers hardness tester to test the fracture resistance (KIC). Two-body wear tests were performed in a reciprocal ball-on-flat configuration under artificial saliva. The parameters of load force (50 N), reciprocating amplitude (500 μm), frequency (2 Hz), and the test cycle (10,000 cycles) were selected. Specimen microstructure, indentation morphology, and wear scars were observed by scanning electron microscope (SEM), optical microscopy, and three-dimensional profile microscopy. EX, VS, and EC demonstrated significantly higher KIC values than the enamel, while ceramic materials showed smaller wear depth results. Cracks, massive delamination, and shallow plow were seen on the enamel worn scar. Long deep plow, delamination, and brittle cracks are more common for VM and EC, and short shallow plow and smooth subsurface are the characteristics of EX and VS. Greater fracture toughness values indicated higher wear resistances of the materials for the test glass ceramics. The CAD/CAM glass ceramics performed greater wear resistance than enamel. Feldspar- and leucite-reinforced glass ceramics illustrated better wear resistance similar to enamel than lithium disilicate glass ceramics, providing amicable matching with the opposite teeth.


Alloy Digest ◽  
2014 ◽  
Vol 63 (3) ◽  

Abstract Quard 450 is martensitic abrasion-resistant steel with an average hardness of 450 HBW. It is used for mining and earth moving equipment. This datasheet provides information on composition, hardness, and tensile properties as well as fracture toughness. It also includes information on wear resistance as well as forming, heat treating, machining, and joining. Filing Code: SA-695. Producer or source: NLMK Clabecq.


Author(s):  
A.V. Stomatov ◽  
D.V. Stomatov ◽  
P.V. Ivanov ◽  
V.V. Marchenko ◽  
E.V. Piitsky ◽  
...  

In this work, the authors studied and compared the two main methods used in dental practice for the automated production of orthopedic structures: the widely used CAD / CAM milling method and the 3D printing technology. As an object of research, temporary crowns were used, which were made on the basis of the same digital model: a) by the method of CAD / CAM milling from polymethylmethacrylate disks; b) by 3D printing from photopolymer resin based on LCD technology. Comparison of production methods and finished designs was carried out according to the following characteristics: strength, durability, aesthetic qualities, accuracy of orthopedic designs, etc. According to the results of the study, it was concluded that 3D printing can be a good alternative to CAD / CAM milling in solving problems of temporary prosthetics.


2017 ◽  
Vol 54 (4) ◽  
pp. 757-758
Author(s):  
Riham Nagib ◽  
Camelia Szuhanek ◽  
Bogdan Moldoveanu ◽  
Meda Lavinia Negrutiu ◽  
Cosmin Sinescu ◽  
...  

Treatment of impacted teeth often implies placing a bonded attachment and using orthodontic forces to move the tooth into occlusion. The aim of the paper is to describe a novel methodology of manufacturing orthodontic attachments for impacted teeth using the latest CAD software and 3D printing technology. A biocompatible acrylic based resin was used to print a custom made attachment designed based on the volumetric data aquired through cone bean computer tomography. Custom design of the attachment simplified clinical insertion and treatment planning and 3D printing made its manufacturing easier. Being a first trial, more reasearch is needed to improve the methodology and materials used.


Sign in / Sign up

Export Citation Format

Share Document