scholarly journals Validation of a Simple HPLC–UV Method for the Determination of Monomers Released from Dental Resin Composites in Artificial Saliva

2020 ◽  
Vol 3 (2) ◽  
pp. 35
Author(s):  
Elisavet-Ioanna Diamantopoulou ◽  
Orfeas-Evanggelos Plastiras ◽  
Petros Mourouzis ◽  
Victoria Samanidou

Bisphenol-A (BPA), bisphenol A glycerolate dimethacrylate (Bis-GMA), triethylene glycol dimethacrylate (TEGDMA), and urethane dimethacrylate (UDMA) are organic monomers that can be released from dental composites into the oral cavity. Over specific concentrations, they can act as endocrine disruptors or cause toxic effects. The purpose of this work is to develop and validate an analytical method to determine BPA, Bis-GMA, TEGDMA, and UDMA monomers released from synthetic dental resins in artificial saliva. The method was validated before its application to new hybrid ceramic materials used in computer-aided design and computer-aided manufacturing (CAD/CAM) restorations to determine the release of monomers in various time intervals (e.g., 24 h, and 7, 14, 30, and 60 days), both in methanolic solutions, as well as in artificial saliva. Chromatographic analysis was performed isocratically on a Perfect Sil Target ODS-3 analytical column (250 mm × 4.6 mm, 5 µm) with CH3CN/H2O, 58/42% v/v as mobile phase within 23 min. The developed method was validated in terms of selectivity, linearity, accuracy, and precision.

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Kristýna Hynková ◽  
Iva Voborná ◽  
Bernard Linke ◽  
Liran Levin

Abstract Nowadays, patients require the highest quality of treatment, but generally prefer to spend as little time as possible in the dental chair. Therefore, there is significant benefit for using new technologies such as CAD/CAM (computer aided design/computer aided manufacturing), which provides both quality and speed. There is an increase in ceramic materials and ceramic blocks/discs available, with varying properties. This has resulted in some confusion and difficulty in making an informed decision about which material is best for a specific clinical situation. The objective of this review is to provide an overview and comparison of basic mechanical properties of currently used CAD/CAM ceramic materials based on a review of the currently available literature.


Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 1986
Author(s):  
Andreas Koenig ◽  
Julius Schmidtke ◽  
Leonie Schmohl ◽  
Sibylle Schneider-Feyrer ◽  
Martin Rosentritt ◽  
...  

The performance of dental resin-based composites (RBCs) heavily depends on the characteristic properties of the individual filler fraction. As specific information regarding the properties of the filler fraction is often missing, the current study aims to characterize the filler fractions of several contemporary computer-aided design/computer-aided manufacturing (CAD/CAM) RBCs from a material science point of view. The filler fractions of seven commercially available CAD/CAM RBCs featuring different translucency variants were analysed using Scanning Electron Microscopy (SEM) with Energy Dispersive X-ray Spectroscopy (EDS), Micro-X-ray Computed Tomography (µXCT), Thermogravimetric Analysis (TG) and X-ray Diffractometry (XRD). All CAD/CAM RBCs investigated included midifill hybrid type filler fractions, and the size of the individual particles was clearly larger than the individual specifications of the manufacturer. The fillers in Shofu Block HC featured a sphericity of ≈0.8, while it was <0.7 in all other RBCs. All RBCs featured only X-ray amorphous phases. However, in Lava Ultimate, zircon crystals with low crystallinity were detected. In some CAD/CAM RBCs, inhomogeneities (X-ray opaque fillers or pores) with a size <80 µm were identified, but the effects were minor in relation to the total volume (<0.01 vol.%). The characteristic parameters of the filler fraction in RBCs are essential for the interpretation of the individual material’s mechanical and optical properties.


2022 ◽  
Author(s):  
eaeldwakhly not provided

This study was conducted to assess the surface characteristics in terms of roughness of two CAD/CAM (Computer-Aided-Design/Computer-Aided Manufacturing)restorative material spre and post chewing simulation exposure. Methods: Specimens were prepared from two CAD/CAM ceramic materials: Cerec Blocs C and IPS e-max ZirCAD. A total of 10 disks were prepared for each study group. 3D optical noncontact surface profiler was used to test the surface roughness (ContourGT, Bruker, Campbell, CA, USA). A silicone mold was used to fix the individual samples using a self-curing resin. Surface roughness (SR) was examined pre and post exposure to chewing simulation. 480,000 simulated chewing cycles were conducted to mimic roughly two years of intraoral clinical service. The results data was first tested for normality and equal variance (Levene’s test >0.05) then examined with paired and independent sample t-test at a significance level of (p < 0.05). Results:The two CAD-CAM materials tested exhibited increased surface roughness from baseline. The highest mean surface roughness was observed in Cerec blocs C group after chewing simulation (2.34 µm± 0.62 µm). Whereas the lowest surface roughness was observed in IPS e.max ZirCAD group before chewing simulation (0.42 µm± 0.16 µm). Both study groups exhibited significantly different surface roughness values (p< 0.05). There was a statistically higher surface roughness values after the chewing simulation in Cerec blocs C when compared to IPS e.max ZirCAD groups (p = 0.000).Conclusion:Even though both tested CAD/CAM materials differ in recorded surface roughness values, results were within clinically accepted values.


2019 ◽  
Vol 09 (02) ◽  
pp. 57-63
Author(s):  
Sushmita V. Palanisamy ◽  
Chethan Hegde

Abstract Background Contemporary dentistry is advancing toward computer-aided design/ computer-aided manufacturing (CAD/CAM) technology. But the budding dentists are unaware about the advancement. This survey aims at detecting the level of awareness among the undergraduate students and then correlating those results to modify the future curriculum. Objective The study aims (1) to assess the awareness among the dental undergraduate students and (2) to correlate the level of awareness among the third years, final years, and interns. Sample Selection Study sample consist of 300 students (third year students, final year students, and interns) of A. B. Shetty Memorial Institute of Dental Sciences, Mangalore, Karnataka, India. The information of the survey was collected with the help of a questionnaire. Results More than 70% of the students were aware about the basic functioning of CAD/CAM unit and approximately 74% of the students were unaware about the materials used to fabricate the prosthesis using CAD/CAM technology.


2018 ◽  
Vol 55 (1) ◽  
pp. 124-128 ◽  
Author(s):  
Claudia Florina Andreescu ◽  
Doina Lucia Ghergic ◽  
Oana Botoaca ◽  
Violeta Hancu ◽  
Andreea Mariana Banateanu ◽  
...  

Utilization of computer-aided design/computer-aided manufacturing (CAD/CAM) rapidly increases in dental medicine. Making of computer-engineered complete denture is based on scanning of patient data, designing of prosthesis and milling or rapid prototyping. This is digital denture, term that includes innovative devices, software programmes and corresponding materials. Industrially polymerized cross-linked polymethyl methacrylate (PMMA) is the material used for fabrication of digital denture. The aim of this study is to analyze the different cross-linked PMMA used for fabrication of CAD/CAM complete denture.


2018 ◽  
Vol 19 (2) ◽  
pp. 196-204 ◽  
Author(s):  
Apa Juntavee ◽  
Niwut Juntavee ◽  
Phuwiwat Saensutthawijit

ABSTRACT Aim This study evaluated the effect of light-emitting diode (LED) illumination bleaching technique on the surface nanohardness of various computer-aided design and computer-aided manufacturing (CAD/CAM) ceramic materials. Materials and methods Twenty disk-shaped samples (width, length, and thickness = 10, 15, and 2 mm) were prepared from each of the ceramic materials for CAD/CAM, including Lava™ Ultimate (LV), Vita Enamic® (En) IPS e.max® CAD (Me), inCoris® TZI (IC), and Prettau® zirconia (Pr). The samples from each type of ceramic were randomly divided into two groups based on the different bleaching techniques to be used on them, using 35% hydrogen peroxide with and without LED illumination. The ceramic disk samples were bleached according to the manufacturer's instruction. Surface hardness test was performed before and after bleaching using nanohardness tester with a Berkovich diamond indenter. Results The respective Vickers hardness number upon no bleaching and bleaching without or with LED illumination [mean ± standard deviation (SD)] for each type of ceramic were as follows: 102.52 ± 2.09, 101.04 ± 1.18, and 98.17 ± 1.15 for LV groups; 274.96 ± 5.41, 271.29 ± 5.94, and 268.20 ± 7.02 for En groups; 640.74 ± 31.02, 631.70 ± 22.38, and 582.32 ± 33.88 for Me groups; 1,442.09 ± 35.07, 1,431.32 ± 28.80, and 1,336.51 ± 34.03 for IC groups; and 1,383.82 ± 33.87, 1,343.51 ± 38.75, and 1,295.96 ± 31.29 for Pr groups. The results indicated surface hardness reduction following the bleaching procedure of varying degrees for different ceramic materials. Analysis of variance (ANOVA) revealed a significant reduction in surface hardness due to the effect of bleaching technique, ceramic material, and the interaction between bleaching technique and ceramic material (p < 0.05). Conclusion Bleaching resulted in a diminution of the surface hardness of dental ceramic for CAD/CAM. Using 35% hydrogen peroxide bleaching agent with LED illumination exhibited more reduction in surface hardness of dental ceramic than what was observed without LED illumination. Clinical significance Clinicians should consider protection of the existing restoration while bleaching. How to cite this article Juntavee N, Juntavee A, Saensutthawijit P. Influences of Light-emitting Diode Illumination Bleaching Technique on Nanohardness of Computer-aided Design and Computer-aided Manufacturing Ceramic Restorative Materials. J Contemp Dent Pract 2018;19(2):196-204.


Tribologia ◽  
2019 ◽  
Vol 287 (5) ◽  
pp. 87-99
Author(s):  
Wojciech RYNIEWICZ ◽  
Łukasz BOJKO ◽  
Anna M. RYNIEWICZ ◽  
Małgorzata PIHUT ◽  
Paweł PAŁKA

Modern dental prosthetics uses CAD/CAM in the Computer Aided Design (CAD) of substructures and its Computer Aided Manufacturing (CAM) process. The substructure is subject to appropriate veneering, which determines the functional cooperation. The aim of this study is to investigate the friction coefficient and wear resistance of the veneering layers of the substructures of prosthetic structures. The test materials are dedicated veneering layers on substructures made of factory-made CoCr, TiCP, and Ti6Al4V metal fittings as well as the glass-ceramic material LiSi2 and the ceramic ZrO2. The study was conducted on a Roxana Machine Works tribological machine in the ball-and-3discs system in an artificial saliva environment using a Hitachi S3400 scanning microscope. As a reference biomaterial, enamel-dentin discs were used. The tribological processes that take place under chewing conditions in the presence of saliva depend on the properties and technological parameters of the surface layer of the biomaterial wearing out and on the enamel of opposing teeth in contact, which also wears out. They should reproduce the physiological nature of adjustment wear in the stomatognathic system (SS). The determined values of the friction coefficient and wear resistance allowed differences to be indicated in the course of tribological processes, and microscopic analyses confirmed them.


Materials ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 981 ◽  
Author(s):  
Konstantinos Papadopoulos ◽  
Kimon Pahinis ◽  
Kyriaki Saltidou ◽  
Dimitrios Dionysopoulos ◽  
Effrosyni Tsitrou

Computer-aided design/computer-aided manufacturing (CAD/CAM) technology was developed to ensure the sufficient strength of tooth restorations, to improve esthetic restorations with a natural appearance and to make the techniques easier, faster and more accurate. In the view of the limited research on the surface treatments of the CAD/CAM materials and the need to evaluate the ideal surface characteristics of a material to achieve the best adhesion to tooth tissues, this study aimed to investigate the surface roughness and morphology of four different CAD/CAM materials using four different surface treatments. The CAD/CAM materials used in this study were three composites (Shofu Block HC, Lava Ultimate and Brilliant Crios) and a hybrid ceramic (Enamic). The surface of the specimens of each material received one of the following treatments: no surface treatment, sandblasting with 29 μm Al2O3 particles, 9% hydrofluoric acid etching and silane application, and the tribochemical method using CoJet System. Surface roughness was evaluated using optical profilometry, and surface morphology was observed by means of scanning electron microscopy. All surface treatments resulted in higher surface roughness values compared to the control group. Different treatments affected the surface properties of the materials, presumably due to discrepancies in their composition and structure.


Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 4814
Author(s):  
Caroline Adela Ingrid Fischer ◽  
Doina Lucia Ghergic ◽  
Diana Maria Vranceanu ◽  
Stefan Alexandru Ilas ◽  
Raluca Monica Comaneanu ◽  
...  

The present study assessed the retention forces corresponding to different telescopic systems used in removable prosthetic dentures. The telescopic systems were represented by Co–Cr alloy or zirconia-based primary crowns and Co–Cr secondary crowns. All crowns were manufactured using computer-aided design/computer-aided manufacturing technology (CAD/CAM). Two types of reference abutment teeth (upper canine and first upper molar) were selected in order to obtain the telescopic crowns and two taper angles—of 0° and 2°—were used for the design of the crowns. A number of 120 samples of telescopic crowns were obtained and subjected to mechanical tests, following a specific protocol, on a mechanical testing equipment. The retention of the telescopic systems was evaluated for different sets of cycles (up to 360), represented by movements that simulate the intraoral insertion and disinsertion of the telescopic systems. The present study highlights that the telescopic systems in which the primary crown is made of zirconia ceramics presents more advantages than those made of Co–Cr. All telescopic systems studied, highlighted that by modifying the taper angle from 0° to 2°, the retention forces have decreased, irrespective of the materials used for the fabrication of the primary crown, suggesting that by using a taper angle of 0°, which is known to be ideal, more efficient, and reliable prosthesis can be developed. Thus, even though the ceramic–metallic telescopic system exhibited the highest retention, all telescopic crowns evaluated registered values between 2–7 N, indicating that they are suitable for clinical use.


Sign in / Sign up

Export Citation Format

Share Document