scholarly journals Thermal Processing Map and Microstructure Evolution of Inconel 625 Alloy Sheet Based on Plane Strain Compression Deformation

Materials ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5059
Author(s):  
Yuelin Song ◽  
Jiangkun Fan ◽  
Xudong Liu ◽  
Peizhe Zhang ◽  
Jinshan Li

Plane strain compression tests were used to study the deformation behavior of an Inconel 625 alloy sheet at various temperatures and strain rates. The peak stress was selected to establish the constitutive equation, and the processing maps under different strains were drawn. The results show that the effective stress–strain curve of Inconel 625 has typical dynamic recrystallization (DRX) characteristics. With the increasing deformation temperature and the decreasing strain rate, the softening effect is significantly enhanced. The parameters of the constitutive equation are calculated, and the average error of the constitutive equation is 5.68%. Through the analysis of the processing map, a deformation temperature of 950–960 °C with a strain rate of 0.007–0.05 s−1 were determined as the unstable region, and obvious local plastic-rheological zones were found in the unstable region. The optimum deformation condition was found to be 1020–1060 °C/0.005–0.03 s−1. Through electron backscattered diffraction (EBSD) characterization, it was found that both the increase of temperature and the decrease of strain rate significantly promote the recrystallization process. At a low strain rate, the main recrystallization mechanism is discontinuous dynamic recrystallization (DDRX). It is expected that the above results can provide references for the optimization of the rolling process and microstructure control of an Inconel 625 alloy sheet.

2010 ◽  
Vol 650 ◽  
pp. 186-192
Author(s):  
Q.J. Yu ◽  
Wen Ru Sun ◽  
M. Cai ◽  
X.J. Wu ◽  
Shou Ren Guo ◽  
...  

The hot deformation behavior and microstructure of rolled Inconel 625 alloy have been studied from 930°C to 1180°C, and at strain rate from 10 s-1 to 80 s-1, respectively. The results indicate that, as deformation temperature rises, both peak flow stress (PFS) and recrystallization critical strain (RCS) decrease; as the strain rate increases, the PFS is enhanced, but the RCS drops. When the deformation temperature is within 1100°C and 1180°C, the grain size coarsens markedly with the temperature increasing. When the deformation temperature is lower than 1100°C,a higher strain rate is helpful for grain refinement. However, when the temperature is beyond 1100°C,the effect of strain rate on the grain size is reduced.


2019 ◽  
Vol 944 ◽  
pp. 38-45
Author(s):  
Shu Yu Yang ◽  
Qiang Song Wang ◽  
Guo Liang Xie ◽  
Dong Mei Liu ◽  
Fang Liu

In this paper, the flow stresses, the constitutive equation, processing map and the critical conditions of dynamic recrystallization (DRX) of the hot forged QCr0.8 alloy are studied by hot compressive test in the 750-900°C temperature and 0.01-10s-1 strain rate ranges using Gleeble-1500D thermo-mechanical simulator. The compression reduction of thermal compression deformation is 50%. The results show that the thermal deformation temperatures and strain rates have a significant effect on the high temperature deformation behavior of the alloy. The higher the temperature, the smaller the strain rate and the easier the DRX of the alloy is found.The peak stresses of the alloy decreases with the increase of temperature and increases with the increase of the strain rates.The flow stresses during hot deformation can be described by a hyperbolic sine function. The activation energy Q of the thermal compression deformation is determined to be 370.8KJ/mol. The constitutive equation and processing map of the alloy are established. Critical strains of DRX εc are studied by the inflection point characteristic of the lnθ-ε curve of the alloy and the corresponding minimum value of the ∂θ (∂θ)/∂ε-ε curve.


2011 ◽  
Vol 228-229 ◽  
pp. 1112-1117 ◽  
Author(s):  
Ji Xiang Zhang ◽  
Hui Wen ◽  
Wei Feng ◽  
Guo Yin An ◽  
Jin Xi Liu

In order to realize numerical simulation of warm forming and reasonably establish the warm formation process parameters for 6016 aluminum alloy, we study the forging process of 6016 aluminum alloy with warm compression experiments on the Gleele-1500 thermal simulation testing machine, and research the deformation flow stress behavior of the aluminum alloy sheet at different temperatures , strain rate under the warm forming. The results show that the deformation temperature and strain rate have significant influence on flow stress of 6016 aluminum alloy sheet, that is, the alloy is a temperature and strain rate sensitive materials, and the flow stress increases with the increase of strain rate and decreases with the increase of deformation temperature. The deformation constitutive equation of 6016 aluminum alloy is got by multiple linear regression analysis. The constitutive equation is consistent with the experimental curves rather well, which confirms the accuracy of the constitutive equation.


Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6515
Author(s):  
Kexin Dang ◽  
Kehuan Wang ◽  
Gang Liu

TC31 is a new type of α+β dual phase high temperature titanium alloy, which has a high specific strength and creep resistance at temperatures from 650 °C to 700 °C. It has become one of the competitive candidates for the skin and air inlet components of hypersonic aircraft. However, it is very difficult to obtain the best forming windows for TC31 and to form the corresponding complex thin-walled components. In this paper, high temperature tensile tests were carried out at temperatures ranging from 850 °C to 1000 °C and strain rates ranging from 0.001 s−1 to 0.1 s−1, and the microstructures before and after deformation were characterized by an optical microscope, scanning electron microscope, and electron back-scatter diffraction. The dynamic softening and hardening behaviors and the corresponding micro-mechanisms of a TC31 titanium alloy sheet within hot deformation were systematically studied. The effects of deformation temperature, strain rate, and strain on microstructure evolution were revealed. The results show that the dynamic softening and hardening of the material depended on the deformation temperature and strain rate, and changed dynamically with the strain. Obvious softening occurred during hot tensile deformation at a temperature of 850 °C and a strain rate of 0.001 s−1~0.1 s−1, which was mainly caused by void damage, deformation heat, and dynamic recrystallization. Quasi-steady flowing was observed when it was deformed at a temperature of 950 °C~1000 °C and a strain rate of 0.001 s−1~0.01 s−1 due to the relative balance between the dynamic softening and hardening. Dynamic hardening occurred slightly with a strain rate of 0.001 s−1. Mechanisms of dynamic recrystallization transformed from continuous dynamic recrystallization to discontinuous dynamic recrystallization with the increase in strain when it was deformed at a temperature of 950 °C and a strain rate of 0.01 s−1. The grain size also decreased gradually due to the dynamic recrystallization, which provided an optimal forming condition for manufacturing thin-walled components with the desired microstructure and an excellent performance.


Metals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 838
Author(s):  
Hui Yu ◽  
Hao Liu ◽  
Binan Jiang ◽  
Wei Yu ◽  
Shaoming Kang ◽  
...  

The effect of the addition of bismuth on the dynamic recrystallization (DRX) behavior of the matrix has been investigated by comparing coarse grain pure Mg with the addition of 3 wt.% Bi, using a uniaxial compression test in the temperature range of 473–623 K and the strain rate of 0.01–10 s−1. The constitutive equation, processing map, microstructure, and texture evolution of the Mg-3Bi alloy were systematically investigated. The results showed that the Bi addition could refine the grain size and accelerate the DRX process. The DRX kinetics is discussed in detail, accompanied by extensive characterization employing EBSD analysis. The DRX of the Mg-3Bi alloy depended on the deformation temperature rather than the strain rate. The {10–12} tensile twin appeared at 573 K/0.01–0.1 s−1, and discontinuous DRX (DDRX), continuous DRX (CDRX) as the main mechanism in the case of 573 K/0.01 s−1, while the dominant mechanism was DDRX when deformation temperature and strain rate increased. Particle-stimulated nucleation (PSN) was also involved in the DRX of this new RE-free Mg alloy.


2021 ◽  
Vol 1035 ◽  
pp. 189-197
Author(s):  
Bao Ying Li ◽  
Bao Hong Zhu

The hot deformation behavior of spray-formed AlSn20Cu alloy during hot compression deformation was studied, and the constitutive equation of AlSn20Cu alloy was established. The samples of spray-formed AlSn20Cu alloy were compressed on Gleeble-3500 thermal simulation test machine. The error of the true stress caused by adiabatic heating effect in the experiment was corrected. The constitutive equation of spray-formed AlSn20Cu alloy could be represented by Zener-Hollomon parameter in a hyperbolic sine function. The results showed that the deformation temperatures and strain rates had a notable effect on the true stress of the alloy. At the identical deformation temperature, the true stress increased with the increase of strain rate. When the strain rate was constant, the stress decreased with the increase of deformation temperature. After hot compression deformation, the tin phase was elongated along the direction perpendicular to the compression axis with short strips and blocks. With the increase of deformation temperature and the decrease of strain rate, Sn phase distribution became more homogeneous.


2016 ◽  
Vol 838-839 ◽  
pp. 568-573 ◽  
Author(s):  
Xiu Quan Han ◽  
Ming Jie Fu

The superplasticity of high Nb Ti3Al based alloy - Ti-23Al-17Nb (at.%) alloy sheet under the conditions of 940~1000°C and 5.5×10-5s-1~1.7×10-3s-1are studied. The results show the elongation changes as a parabola with the deformation temperature increasing, and the maximum elongation obtained at 960°C and 5.5x10-5s-1 is 1447.5%. Work hardening stage increases much more than softening stage when strain rate is decreased due to the increasing of element Nb. Compared with primary microstructure, the lath-like α2 grains gradually disappeared, the α2 grains became more equiaxed, and the content and size of α2 grains are decreasing with increasing of deformation temperature. The volume fraction ratio of α2 and β phase at the optimum deformation condition is 50:50%. The cavities mechanism at the fracture tip was discussed; it can be defined that the cavities could be avoided when deformation temperature is higher than 940°C.


2019 ◽  
Vol 6 (4) ◽  
pp. 046521 ◽  
Author(s):  
Zhenxiong Wei ◽  
Zhongjun Wang ◽  
Jing Zhu ◽  
Weijuan Li ◽  
Hongbin Wang

Materials ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 3623 ◽  
Author(s):  
Danying Zhou ◽  
Hua Gao ◽  
Yanhua Guo ◽  
Ying Wang ◽  
Yuecheng Dong ◽  
...  

A self-designed Ti-35421 (Ti-3Al-5Mo-4Cr-2Zr-1Fe wt%) titanium alloy is a new type of low-cost high strength titanium alloy. In order to understand the hot deformation behavior of Ti-35421 alloy, isothermal compression tests were carried out under a deformation temperature range of 750–930 °C with a strain rate range of 0.01–10 s−1 in this study. Electron backscatter diffraction (EBSD) was used to characterize the microstructure prior to and post hot deformation. The results show that the stress–strain curves have obvious yielding behavior at a high strain rate (>0.1 s−1). As the deformation temperature increases and the strain rate decreases, the α phase content gradually decreases in the α + β phase region. Meanwhile, spheroidization and precipitation of α phase are prone to occur in the α + β phase region. From the EBSD analysis, the volume fraction of recrystallized grains was very low, so dynamic recovery (DRV) is the dominant deformation mechanism of Ti-35421 alloy. In addition to DRV, Ti-35421 alloy is more likely to occur in continuous dynamic recrystallization (CDRX) than discontinuous dynamic recrystallization (DDRX).


Sign in / Sign up

Export Citation Format

Share Document