scholarly journals Performance of a Piezoelectric Energy Harvesting System for an Energy-Autonomous Instrumented Total Hip Replacement: Experimental and Numerical Evaluation

Materials ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5151
Author(s):  
Hans-E. Lange ◽  
Nils Arbeiter ◽  
Rainer Bader ◽  
Daniel Kluess

Instrumented implants can improve the clinical outcome of total hip replacements (THRs). To overcome the drawbacks of external energy supply and batteries, energy harvesting is a promising approach to power energy-autonomous implants. Therefore, we recently presented a new piezoelectric-based energy harvesting concept for THRs. In this study, the performance of the proposed energy harvesting system was numerically and experimentally investigated. First, we numerically reproduced our previous results for the physiologically based loading situation in a simplified setup. Thereafter, this configuration was experimentally realised by the implantation of a functional model of the energy harvesting concept into an artificial bone segment. Additionally, the piezoelectric element alone was investigated to analyse the predictive power of the numerical model. We measured the generated voltage for a load profile for walking and calculated the power output. The maximum power for the directly loaded piezoelectric element and the functional model were 28.6 and 10.2 µW, respectively. Numerically, 72.7 µW was calculated. The curve progressions were qualitatively in good accordance with the numerical data. The deviations were explained by sensitivity analysis and model simplifications, e.g., material data or lower acting force levels by malalignment and differences between virtual and experimental implantation. The findings verify the feasibility of the proposed energy harvesting concept and form the basis for design optimisations with increased power output.

Author(s):  
Abbas F. Jasim ◽  
Hao Wang ◽  
Greg Yesner ◽  
Ahmad Safari ◽  
Pat Szary

This study investigated the energy harvesting performance of a piezoelectric module in asphalt pavements through laboratory testing and multi-physics based simulation. The energy harvester module was assembled with layers of Bridge transducers and tested in the laboratory. A decoupled approach was used to study the interaction between the energy harvester and the surrounding pavement. The effects of embedment location, vehicle speed, and temperature on energy harvesting performance were investigated. The analysis findings indicate that the embedment location and vehicle speed affects the resulted power output of the piezoelectric energy harvesting system. The embedment depth of the energy module affects both the magnitude and frequency of stress pulse on top of the energy module induced by tire loading. On the other hand, higher vehicle speed causes greater loading frequency and thus greater power output; the effect of pavement temperature is negligible. The analysis of total power output before reaching fatigue failure of the energy module can be used to determine the optimum embedment location in the asphalt layer. The proposed energy harvesting system provides great potential to generate green energy from waste kinetic energy in roadway pavements. Field study is recommended to verify these findings with long-term performance monitoring of pavement with embedded energy harvesters.


2018 ◽  
Vol 5 (3-4) ◽  
pp. 53-65 ◽  
Author(s):  
Dinesh R. Palikhel ◽  
Tyrus A. McCarty ◽  
Jagdish P. Sharma

Abstract Vibrational energy from intermodal transport system can be recovered through the application of piezoelectric energy harvesting system. The intermodal vibration sources are passenger cars and freight trucks moving on streets and highways, trains moving on railway tracks and planes moving on airport runways. However, the primary limiting factor of the application of the piezoelectric energy harvesting system has been the insignificant power output for power storage or to directly power electrical device. A special nano-mixture coating is developed to enhance the energy harvesting capability of the conventional piezoelectric material. This research investigates the impact of the nano-mixture coating on the power output. The experimental results of the nano-mixture coated system show substantial and explicit improvement on the power output. Alternative geometrical designs, trapezoidal and triangular are explored in anticipation for improved power output. But the rectangular energy harvester demonstrates better power harvesting capability. The results presented in this paper show the potential of the nano-mixture coating in power harvesting from intermodal transport system.


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3480
Author(s):  
Hans-E. Lange ◽  
Rainer Bader ◽  
Daniel Kluess

Energy harvesting is a promising approach to power novel instrumented implants that have passive sensory functions or actuators for therapeutic measures. We recently proposed a new piezoelectric concept for energy harvesting in total hip replacements. The mechanical implant safety and the feasibility of power generation were numerically demonstrated. However, the power output for the chosen piezoelectric element was low. Therefore, we investigated in the present study different geometry variants for an increased power output for in vivo applications. Using the same finite element model, we focused on new, customised piezoelectric element geometries to optimally exploit the available space for integration of the energy harvesting system, while maintaining the mechanical safety of the implant. The result of our iterative design study was an increased power output from 29.8 to 729.9 µW. This amount is sufficient for low-power electronics.


Author(s):  
Hans-E Lange ◽  
Rainer Bader ◽  
Daniel Kluess

Instrumented implants are a promising approach to further improve the clinical outcome of total hip arthroplasties. For the integrated sensors or active functions, an electrical power supply is required. Energy harvesting concepts can provide autonomous power with unlimited lifetime and are independent from external equipment. However, those systems occupy space within the mechanically loaded total hip replacement and can decrease the life span due to fatigue failure in the altered implant. We previously presented a piezoelectric energy harvesting system for an energy-autonomous instrumented total hip stem that notably changes the original implant geometry. The aim of this study was to investigate the remaining structural fatigue failure strength of the metallic femoral implant component in a worst-case scenario. Therefore, the modified hip stem was tested under load conditions based on ISO 7206-4:2010. The required five million cycles were completed twice by all samples (n = 3). Additionally applied cycles with incrementally increased load levels up to 4.7 kN did not induce implant failure. In total, 18 million cycles were endured, outperforming the requirements of the ISO standard. Supplementary finite element analysis was conducted to determine stress distribution within the implant. A high stress concentration was found in the region of modification. The stress level showed an increase compared to the previously evaluated physiological loading situation and was close to the fatigue data from the literature. The stress concentration factor compared to the original geometry amounted to 2.56. The assessed stress level in accordance with the experimental fatigue testing can serve as a maximum reference value for further implant design modifications and optimisations.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2171
Author(s):  
Hyeonsu Han ◽  
Junghyuk Ko

Along with the increase in renewable energy, research on energy harvesting combined with piezoelectric energy is being conducted. However, it is difficult to predict the power generation of combined harvesting because there is no data on the power generation by a single piezoelectric material. Before predicting the corresponding power generation and efficiency, it is necessary to quantify the power generation by a single piezoelectric material alone. In this study, the generated power is measured based on three parameters (size of the piezoelectric ceramic, depth of compression, and speed of compression) that contribute to the deformation of a single PZT (Lead zirconate titanate)-based piezoelectric element. The generated power was analyzed by comparing with the corresponding parameters. The analysis results are as follows: (i) considering the difference between the size of the piezoelectric ceramic and the generated power, 20 mm was the most efficient piezoelectric ceramic size, (ii) considering the case of piezoelectric ceramics sized 14 mm, the generated power continued to increase with the increase in the compression depth of the piezoelectric ceramic, and (iii) For piezoelectric ceramics of all diameters, the longer the depth of deformation, the shorter the frequency, and depending on the depth of deformation, there is a specific frequency at which the charging power is maximum. Based on the findings of this study, PZT-based elements can be applied to cases that receive indirect force, including vibration energy and wave energy. In addition, the power generation of a PZT-based element can be predicted, and efficient conditions can be set for maximum power generation.


2013 ◽  
Vol 52 (10S) ◽  
pp. 10MB03 ◽  
Author(s):  
Hyun Jun Jung ◽  
Daniel Song ◽  
Seong Kwang Hong ◽  
Yooseob Song ◽  
Tae Hyun Sung

Author(s):  
Jesse J. French ◽  
Colton T. Sheets

Wind energy capture in today’s environment is often focused on producing large amounts of power through massive turbines operating at high wind speeds. The device presented by the authors performs on the extreme opposite scale of these large wind turbines. Utilizing vortex induced vibration combined with developed and demonstrated piezoelectric energy harvesting techniques, the device produces power consistent with peer technologies in the rapidly growing field of micro-energy harvesting. Vortex-induced vibrations in the Karman vortex street are the catalyst for energy production of the device. To optimize power output, resonant frequency of the harvester is matched to vortex shedding frequency at a given wind speed, producing a lock-on effect that results in the greatest amplitude of oscillation. The frequency of oscillation is varied by altering the effective spring constant of the device, thereby allowing for “tuning” of the device to specific wind environments. While localized wind conditions are never able to be predicted with absolute certainty, patterns can be established through thorough data collection. Sampling of local wind conditions led to the design and testing of harvesters operating within a range of wind velocities between approximately 4 mph and 25 mph. For the extremities of this range, devices were constructed with resonant frequencies of approximately 17 and 163 Hz. Frequency variation was achieved through altering the material composition and geometry of the energy harvester. Experimentation was performed on harvesters to determine power output at optimized fluid velocity, as well as above and below. Analysis was also conducted on shedding characteristics of the device over the tested range of wind velocities. Computational modeling of the device is performed and compared to experimentally produced data.


2016 ◽  
Vol 09 (05) ◽  
pp. 1650069 ◽  
Author(s):  
Yaoze Liu ◽  
Tongqing Yang ◽  
Fangming Shu

Since the piezoelectric properties were used for energy harvesting, almost all forms of energy harvester needs to be bonded with a mass block to achieve pre-stress. In this article, disc type piezoelectric energy harvester is chosen as the research object and the relationship between mass bonding area and power output is studied. It is found that if the bonding area is changed as curved, which is usually complanate in previous studies, the deformation of the circular piezoelectric ceramic is more uniform and the power output is enhanced. In order to test the change of the deformation, we spray several homocentric annular electrodes on the surface of a piece of bare piezoelectric ceramic and the output of each electrode is tested. Through this optimization method, the power output is enhanced to more than 11[Formula: see text]mW for a matching load about 24[Formula: see text]k[Formula: see text] and a tip mass of 30[Formula: see text]g at its resonant frequency of 139[Formula: see text]Hz.


Author(s):  
Saman Farhangdoust ◽  
Claudia Mederos ◽  
Behrouz Farkiani ◽  
Armin Mehrabi ◽  
Hossein Taheri ◽  
...  

Abstract This paper presents a creative energy harvesting system using a bimorph piezoelectric cantilever-beam to power wireless sensors in an IoT network for the Sunshine Skyway Bridge. The bimorph piezoelectric energy harvester (BPEH) comprises a cantilever beam as a substrate sandwiched between two piezoelectric layers to remarkably harness ambient vibrations of an inclined stay cable and convert them into electrical energy when the cable is subjected to a harmonic acceleration. To investigate and design the bridge energy harvesting system, a field measurement was required for collecting cable vibration data. The results of a non-contact laser vibrometer is used to remotely measure the dynamic characteristics of the inclined cables. A finite element study is employed to simulate a 3-D model of the proposed BPEH by COMSOL Multiphasics. The FE modelling results showed that the average power generated by the BPEH excited by a harmonic acceleration of 1 m/s2 at 1 Hz is up to 614 μW which satisfies the minimum electric power required for the sensor node in the proposed IoT network. In this research a LoRaWAN architecture is also developed to utilize the BPEH as a sustainable and sufficient power resource for an IoT platform which uses wireless sensor networks installed on the bridge stay cables to collect and remotely transfer bridge health monitoring data over the bridge in a low-power manner.


Sign in / Sign up

Export Citation Format

Share Document