scholarly journals How to Avoid the Detachment of Threads of Varnish during Production, through Cutting and Drawing, in the Manufacture of Lids with a ‘Twist-Off’ Mechanism Used for the Closure of Glass Containers

Materials ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5434
Author(s):  
Florentino Alvarez-Antolin ◽  
Laura Francos-Garrote ◽  
Alejandro Gonzalez-Pociño ◽  
Alberto Cofiño-Villar

The lids of glass containers which have a ‘twist-off’ mechanism are manufactured from tinplate through a process of cutting and drawing. Previously, the tinplate was protected with a double layer of a certain epoxy-phenolic varnish. During cutting, the detachment of threads of varnish is produced, and these may reach more than 150 microns in diameter. These threads stick to the equipment, thus hindering the shaping process. After manufacturing thousands of lids, stops must inevitably be made in production in order to clean machinery. Through the application of a fractioned design of experiment (DoE) application, carried out on an industrial scale, the effect of a number of factors on the detachment of threads of varnish was studied. Some to these factors refer to coating, others to the substratum and others to the process of cutting and drawing. It is concluded that the detachment is greater in the disk areas which are parallel to the forward direction of the production line. This problem could be substantially reduced, and even eliminated, if the direction of the rolling of the sheet metal were perpendicular to that of the forward direction of the production line, if the blank-holder is situated at 4 bar, if the time between the curing process and cutting is no more than 3threedays, if the clearance in the cutting is situated at 0.06 mm, and if the grammage of the varnish and the grammage of the layer of tin are increased.

2019 ◽  
Vol 103 (9-12) ◽  
pp. 4507-4517 ◽  
Author(s):  
Yujie Huang ◽  
Zhipeng Lai ◽  
Quanliang Cao ◽  
Xiaotao Han ◽  
Ning Liu ◽  
...  

2012 ◽  
Vol 249-250 ◽  
pp. 51-58
Author(s):  
Qing Wen Qu ◽  
Tian Ke Sun ◽  
Shao Qing Wang ◽  
Hong Juan Yu ◽  
Fang Li

A simulation of deep drawing process on the sheet metal was done by using Dynaform, the influence of blank holder force, deep drawing speed and friction coefficient on the forming speed of sheet metal in the deep drawing process were got. The forming speed of sheet metal determines the quality of deep drawing, in the deep drawing process the blank holder force and the deep drawing speed are controllable parameters, the friction coefficient can be intervened and controlled, and it’s a manifestation of the interaction of all parameters, the main factors which influence the friction coefficient just have blank holder force, deep drawing speed and lubrication except the material. The conclusion of this study provides the basic data for the analysis of the lubrication of mould, the study of lubricant and the prediction of the service life of deep drawing die.


2015 ◽  
Vol 75 (8) ◽  
Author(s):  
Muhamad Sani Buang ◽  
Shahrul Azam Abdullah ◽  
Juri Saedon ◽  
Hashim Abdullah

Complex components of the sheet metal forming process need to be designed with high precision and accuracy in order to prevent defects and misalignment of the end products. One of the sheet metal cool stamping process for these complex automotive components is burring which is the forming of a flange around a hole made in a piece of sheet metal. Springback is a common defect during the burring process. The aims of this paper are to investigate the springback effect and improve shape accuracy of hole burring by inner burring process of lower arm part for automotive lower arm part. The springback defects at hole burring usually happened on the inner burring process. Experimental stretch flanging for cold stamping process of inner burring process was used to investigate the reasons of springback effect around the burred hole for a lower arm part of high strength steel (HSS) sheets SPFH590. From the two designs of burring punch dies, the result shows the values of springback effect for clearance -0.15 which have a big gap at hole burring A arm and B arm diameters, are larger than clearance -0.34 which have small gap for inner burring process of lower arm part. The experimental analysis shows that springback is proportionally related to the punch-die clearance parameter of the tool profile where the springback increase as the clearance increases. 


2018 ◽  
Vol 789 ◽  
pp. 51-58
Author(s):  
Bhadpiroon Watcharasresomroeng

Nowadays, there are several grades of sheet metal used in the automotive industry. Highstrength steel sheets, particularly, have been widely used in order to reduce the weight of vehicles,which is strongly related to their fuel consumption rate. However, it is generally known that thestrength of the sheets, which is relatively higher than that of the conventional carbon steel sheets,results in their low formability. In this work, the limiting drawing ratio and forming behavior of sheetmetal that is conventionally used for automobile parts were evaluated by test using cylindrical cupwith hole. The feasibility to use limiting cup height for comparing formability of sheet metal was alsoincluded in the investigation. The sheet materials used in the experiments are aluminium, cold rolledsteel, high strength steel and advanced high strength steel. The process parameters for this study weredie corner radius and blank holder force. Workpiece materials were prepared with a circular shapeand with a diameter of 80 millimetres. In the center of the circular workpiece, a 12-millimetrediameter hole was drilled to observe the formability of each of the materials. The advantage of usingan initial blank with a hole in the center by the cylindrical cup drawing test is that the cup does notfail from changes of the thickness of material near the punch radius at the bottom of the cup. Thelimiting cup height of the investigated materials were evaluated by test using the cylindrical cup withhole. The results show that the limiting cup height values have a relationship to the limiting drawingratio values of the investigated materials. Testing using cylindrical cup with hole by evaluating thelimiting cup height value is feasible for comparing the formability of sheet metals.


2007 ◽  
Vol 187-188 ◽  
pp. 517-520 ◽  
Author(s):  
G. Sun ◽  
M.Z. Li ◽  
X.P. Yan ◽  
P.P. Zhong

2012 ◽  
Vol 455-456 ◽  
pp. 1122-1127
Author(s):  
Xiang Wu Jia ◽  
Shu Gen Hu

Taking example for U-shape sheet metal, the paper studies the forming and springback process with Dynaform, how much the springback influenced by several factors is studied, including die figure, stamping velocity, the stroke, the blank holder force and friction. Then a useful conclusion can be reached: Using die figure to optimize the technological parameters remarkably reduce the springback value, it provides a new method to control and solve the springback issue.


2000 ◽  
Vol 98 (1) ◽  
pp. 7-16 ◽  
Author(s):  
Leonid B Shulkin ◽  
Ronald A Posteraro ◽  
Mustafa A Ahmetoglu ◽  
Gary L Kinzel ◽  
Taylan Altan

2021 ◽  
Vol 883 ◽  
pp. 167-174
Author(s):  
Alberto Tomas Garcia ◽  
Nikita Levichev ◽  
Vitalii Vorkov ◽  
Dirk Cattrysse ◽  
Joost R. Duflou

Pallets and forklifts equipped with Radio-Frequency Identification (RFID) technology can be a suitable option for bridging the information gap between cutting and bending stages in sheet metal production. However, a decision on how tagged pallets can be assigned to their content needs to be made. In this paper, a reactive and a proactive approach for the near-automatic identification of parts on pallets after cutting are discussed and their performance is evaluated through a series of simulations. In both approaches, the nesting information along with the measured net weight of the pallets are used to determine the parts on top of each pallet. The influence of the alternative solutions problem on the performance is investigated for both approaches. It is concluded that the actual decision on the approach selection depends on the time that is required for each recalculation and each pre-allocation. Those times are workshop dependent and, therefore, a decision should be made for each workshop specifically.


Sign in / Sign up

Export Citation Format

Share Document