scholarly journals Study of Pavement Micro- and Macro-Texture Evolution Due to Traffic Polishing Using 3D Areal Parameters

Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5769
Author(s):  
Yiwen Zou ◽  
Guangwei Yang ◽  
Wanqing Huang ◽  
Yang Lu ◽  
Yanjun Qiu ◽  
...  

Pavement micro- and macro-texture have significant effects on roadway friction and driving safety. The influence of traffic polish on pavement texture has been investigated in many laboratory studies. This paper conducts field evaluation of pavement micro- and macro-texture under actual traffic polishing using three-dimensional (3D) areal parameters. A portable high-resolution 3D laser scanner measured pavement texture from a field site in 2018, 2019, and 2020. Then, the 3D texture data was decomposed to micro- and macro-texture using Fourier transform and Butterworth filter methods. Twenty 3D areal parameters from five categories, including height, spatial, hybrid, function, and feature parameters, were calculated to characterize pavement micro- and macro-texture. The results demonstrate that the 3D areal parameters provide an alternative to comprehensively characterize the evolution of pavement texture under traffic polish from different aspects.

Coatings ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 162 ◽  
Author(s):  
Yuanyuan Wang ◽  
Xingyu Lai ◽  
Fei Zhou ◽  
Jinshun Xue

Pavement skid resistance is an important guarantee for driving safety. However, it is very difficult to determine the exact friction in a field environment. In order to overcome the limitations of traditional evaluation methods, the effect mechanism of surface 3D (three-dimensional) texture on skid resistance was firstly analyzed. Then the surface 3D texture of pavement was acquired through an improved binocular reconstruction method. Additionally, the relationship between friction coefficient and 3D texture was also analyzed. Subsequently, under the concept of IFI (international friction index) used to harmonize different detection methods of skid resistance, the evaluation model of skid resistance based 3D texture was further established. The results showed that the multiple quadratic multinomial regression model can well describe the relationship between skid resistance and texture indicators. The establishment of an improved evaluation model is simple to operate and implement. It can directly evaluate the skid resistance on pavement surface once the aggregates’ type and 3D texture are known. This evaluation model not only overcomes the challenges of friction coefficient with a strong conditional restriction, but also provides a harmonious approach for different detection methods in the evaluation of pavement skid resistance.


Author(s):  
S. Naka ◽  
R. Penelle ◽  
R. Valle

The in situ experimentation technique in HVEM seems to be particularly suitable to clarify the processes involved in recrystallization. The material under investigation was unidirectionally cold-rolled titanium of commercial purity. The problem was approached in two different ways. The three-dimensional analysis of textures was used to describe the texture evolution during the primary recrystallization. Observations of bulk-annealed specimens or thin foils annealed in the microscope were also made in order to provide information concerning the mechanisms involved in the formation of new grains. In contrast to the already published work on titanium, this investigation takes into consideration different values of the cold-work ratio, the temperature and the annealing time.Two different models are commonly used to explain the recrystallization textures i.e. the selective grain growth model (Beck) or the oriented nucleation model (Burgers). The three-dimensional analysis of both the rolling and recrystallization textures was performed to identify the mechanismsl involved in the recrystallization of titanium.


2019 ◽  
Vol 952 (10) ◽  
pp. 47-54
Author(s):  
A.V. Komissarov ◽  
A.V. Remizov ◽  
M.M. Shlyakhova ◽  
K.K. Yambaev

The authors consider hand-held laser scanners, as a new photogrammetric tool for obtaining three-dimensional models of objects. The principle of their work and the newest optical systems based on various sensors measuring the depth of space are described in detail. The method of simultaneous navigation and mapping (SLAM) used for combining single scans into point cloud is outlined. The formulated tasks and methods for performing studies of the DotProduct (USA) hand-held laser scanner DPI?8X based on a test site survey are presented. The accuracy requirements for determining the coordinates of polygon points are given. The essence of the performed experimental research of the DPI?8X scanner is described, including scanning of a test object at various scanner distances, shooting a test polygon from various scanner positions and building point cloud, repeatedly shooting the same area of the polygon to check the stability of the scanner. The data on the assessment of accuracy and analysis of research results are given. Fields of applying hand-held laser scanners, their advantages and disadvantages are identified.


Author(s):  
Hang-Nga Mai ◽  
Du-Hyeong Lee

This study evaluated the effects of different matching methods on the accuracy of dentofacial integration in stereophotogrammetry and smartphone face-scanning systems. The integration was done (N = 30) with different matching areas (n = 10), including teeth image only (TO), perioral area without markers (PN) and with markers (PM). The positional accuracy of the integrated models was assessed by measuring the midline linear deviations and incisal line canting between the experimental groups and laser scanner-based reference standards. Kruskal–Wallis and Mann–Whitney U tests were used for statistical analyses (α = 0.05). The PM method exhibited the smallest linear deviations in both systems; while the highest deviations were found in the TO in stereophotogrammetry; and in PN in smartphone. For the incisal line canting; the canting degree was the lowest in the PM method; followed by that in the TO and the PN in both systems. Although stereophotogrammetry generally exhibited higher accuracy than the smartphone; the two systems demonstrated no significant difference when the perioral areas were used for matching. The use of perioral scans with markers enables accurate dentofacial image integration; however; cautions should be given on the accuracy of the perioral image obtained without the use of markers.


Sensors ◽  
2020 ◽  
Vol 21 (1) ◽  
pp. 201
Author(s):  
Michael Bekele Maru ◽  
Donghwan Lee ◽  
Kassahun Demissie Tola ◽  
Seunghee Park

Modeling a structure in the virtual world using three-dimensional (3D) information enhances our understanding, while also aiding in the visualization, of how a structure reacts to any disturbance. Generally, 3D point clouds are used for determining structural behavioral changes. Light detection and ranging (LiDAR) is one of the crucial ways by which a 3D point cloud dataset can be generated. Additionally, 3D cameras are commonly used to develop a point cloud containing many points on the external surface of an object around it. The main objective of this study was to compare the performance of optical sensors, namely a depth camera (DC) and terrestrial laser scanner (TLS) in estimating structural deflection. We also utilized bilateral filtering techniques, which are commonly used in image processing, on the point cloud data for enhancing their accuracy and increasing the application prospects of these sensors in structure health monitoring. The results from these sensors were validated by comparing them with the outputs from a linear variable differential transformer sensor, which was mounted on the beam during an indoor experiment. The results showed that the datasets obtained from both the sensors were acceptable for nominal deflections of 3 mm and above because the error range was less than ±10%. However, the result obtained from the TLS were better than those obtained from the DC.


2017 ◽  
Vol 2017 ◽  
pp. 1-14 ◽  
Author(s):  
Ying Yan ◽  
Gengping Li ◽  
Jinjun Tang ◽  
Zhongyin Guo

Operating speed is a critical indicator for road alignment consistency design and safety evaluation. Although extensive studies have been conducted on operating speed prediction, few models can finish practical continuous prediction at each point along alignment on multilane highways. This study proposes a novel method to estimate the operating speed for multilane highways in China from the aspect of the three-dimensional alignment combination. Operating speed data collected in field experiments on 304 different alignment combination sections are detected by means of Global Positioning System. First, the alignment comprehensive index (ACI) is designed and introduced to describe the function accounting for alignment continuity and driving safety. The variables used in ACI include horizontal curve radius, change rate of curvature, deflection angle of curve, grade, and lane width. Second, the influence range of front and rear alignment on speed is determined on the basis of drivers’ fixation range and dynamical properties of vehicles. Furthermore, a prediction model based on exponential relationships between road alignment and speeds is designed to predict the speed of passenger cars and trucks. Finally, three common criteria are utilized to evaluate the effectiveness of the prediction models. The results indicate that the prediction models outperform the other two operating speed models for their higher prediction accuracy.


i-Perception ◽  
2017 ◽  
Vol 8 (1) ◽  
pp. 204166951668608 ◽  
Author(s):  
Ling Xia ◽  
Sylvia C. Pont ◽  
Ingrid Heynderick

Humans are able to estimate light field properties in a scene in that they have expectations of the objects’ appearance inside it. Previously, we probed such expectations in a real scene by asking whether a “probe object” fitted a real scene with regard to its lighting. But how well are observers able to interactively adjust the light properties on a “probe object” to its surrounding real scene? Image ambiguities can result in perceptual interactions between light properties. Such interactions formed a major problem for the “readability” of the illumination direction and diffuseness on a matte smooth spherical probe. We found that light direction and diffuseness judgments using a rough sphere as probe were slightly more accurate than when using a smooth sphere, due to the three-dimensional (3D) texture. We here extended the previous work by testing independent and simultaneous (i.e., the light field properties separated one by one or blended together) adjustments of light intensity, direction, and diffuseness using a rough probe. Independently inferred light intensities were close to the veridical values, and the simultaneously inferred light intensity interacted somewhat with the light direction and diffuseness. The independently inferred light directions showed no statistical difference with the simultaneously inferred directions. The light diffuseness inferences correlated with but contracted around medium veridical values. In summary, observers were able to adjust the basic light properties through both independent and simultaneous adjustments. The light intensity, direction, and diffuseness are well “readable” from our rough probe. Our method allows “tuning the light” (adjustment of its spatial distribution) in interfaces for lighting design or perception research.


1997 ◽  
Vol 28 (3-4) ◽  
pp. 211-218 ◽  
Author(s):  
V. Marx ◽  
D. Raabe ◽  
O. Engler ◽  
G. Gottstein

In this study both primary static recrystallization and static recovery of cold rolled bcc and fcc metals and alloys are numerically simulated using a three-dimensional model that is based on a modified cellular automaton approach. The model considers the influence of the initial deformation texture and microstructure on both static recovery and primary static recrystallization with a high spatial resolution. The cellular automat technique provides both local and statistical information about the kinetics, the morphology and the texture change during annealing. The influence of nucleation and growth can be studied in detail. The simulations are compared to experimental results obtained on fcc and bcc polycrystals.


Sign in / Sign up

Export Citation Format

Share Document