scholarly journals Numerical Investigation of Composite Behavior and Strength of Rectangular Concrete-Filled Cold-Formed Steel Tubular Stub Columns

Materials ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6221
Author(s):  
Liping Wang ◽  
Yanan An ◽  
Faxing Ding ◽  
Yachuan Kuang ◽  
Qing Ma ◽  
...  

The objective of this study was to investigate the composite behavior of rectangular concrete-filled cold-formed steel (CFS) tubular stub columns under axial compression. A fine finite 3D solid element model of rectangular concrete-filled cold-formed steel tubular stub column was established by ABAQUS, which utilized a constitutive model of cold-formed steel considering the cold-forming effect and a triaxial plastic-damage constitutive model of the infilled concrete. Good agreement was achieved and the average discrepancy between the experimental and FE results was less than 5%. Based on the verified models, a further parametric analysis was carried out to reveal the influence of various factors on the strength and behavior of the concrete-filled rectangular cold-formed steel tubular stub columns. The factors included constitutive models adopted for cold-formed steel, length over width ratio of the rectangular section, wall-thickness and width, and concrete strength and yield strength of the cold-formed steel. A total of 144 FE models were analyzed. The stress nephogram was reasonably simplified in accordance with the limit state and a theoretical formula considering confinement coefficient was proposed to estimate the ultimate bearing capacity of concrete-filled rectangular cold-formed steel tubular stub columns using the superposition method. The calculated results showed satisfactory agreement with both the experimental and FE results, which proved the validity and accuracy of the formula proposed in this paper. In the proposed formula, the confinement coefficient of square concrete-filled cold-formed steel tubular stub columns is larger than that of hot-rolled steel counterparts but smaller than that of the stainless steel counterparts.

Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2435
Author(s):  
Faxing Ding ◽  
Changbin Liao ◽  
En Wang ◽  
Fei Lyu ◽  
Yunlong Xu ◽  
...  

This paper studied the composite action of concrete-filled circular aluminum alloy tubular (CFCAT) stub columns under axial compression. A fine-meshed finite three-dimensional (3D) solid element model making use of a tri-axial plastic-damage constitutive model of concrete and elastoplastic constitutive model of aluminum alloy was established. A parametric study utilizing the verified finite element (FE) model was carried out and the analytical results were exploited to investigate the composite actions of concrete-filled circular aluminum alloy tubular stub columns subjected axial compression. Compared with the concrete-filled steel tube (CFCST) stub columns, the aluminum alloy tube exerted a weaker constraint effect on the infilled concrete due to its lower elastic modulus. Based on the FE analytical results and regression method, the composite action model of concrete-filled circular aluminum alloy tubular stub columns was proposed. By generalizing the stress nephogram of the concrete-filled circular aluminum alloy tubular stub column at the limit state, a design formula was proposed to estimate the ultimate bearing capacity the columns using the superposition method. The predicted results of the proposed formula show a good agreement with both the experimental and FE analytical results. The comparison between the proposed formula and current design methods indicates that the proposed formula is more accurate and convenient to use.


2019 ◽  
Vol 22 (11) ◽  
pp. 2418-2434 ◽  
Author(s):  
Feng Zhou ◽  
Ben Young

Experimental and numerical investigations of concrete-filled double-skin aluminium stub column with a circular hollow section as the outer skin and a square hollow section as the inner skin are presented in this article. A test program was carried out to study the influences of aluminium tube geometric dimensions and concrete strength on structural performance and strength of composite columns. A series of composite columns was tested on outer circular hollow section tubes and inner square hollow section tubes; the spaces between them had been filled with concrete of different nominal cylinder strengths of 40, 70 and 100 MPa. The tubes were fabricated by extrusion using 6061T6 heat-treated aluminium alloy having a nominal 0.2% proof stress of 240 MPa. A non-linear finite element model was developed and verified against experimental results. The test and numerical results were compared with the design strengths to evaluate the applicability of the design rules in the American specifications for aluminium and concrete structures. In addition, the proposed design equations, developed by the authors for concrete-filled double-skin aluminium tubular stub columns with circular hollow section as both outer and inner skins, were used to calculate the design strengths and compared with the experimental and numerical results obtained in this study. The proposed design equations also predicted the ultimate strengths of the concrete-filled double-skin aluminium tubular stub columns accurately with circular hollow section as the outer skin and square hollow section as the inner skin.


2019 ◽  
Vol 22 (8) ◽  
pp. 1817-1829 ◽  
Author(s):  
M Anbarasu

This article aims at investigating the structural response and predicting the ultimate resistance of cold-formed steel built-up columns composed of lipped sigma sections with pinned ends. For this purpose, a numerical model is established by using the finite element code ABAQUS. The finite element models include geometric, material nonlinearity. The effects of initial local and overall geometric imperfections have been taken into consideration in the finite element modelling. The results of the nonlinear finite element analysis were validated with the available experimental results present in the literature. A parametric study was carried out using the developed finite element model to study the effect of member slenderness, height-to-width ratio and depth of trapezoidal stiffener on the ultimate resistance of cold-formed steel closed built-up columns. On the basis of the parametric results, presented herein, appropriateness of the current direct strength method in the North American Specification for cold-formed steel columns is assessed. Based on such comparison, design expression is proposed to provide reliable design strength prediction of cold-formed steel built-up column composed of lipped sigma sections and verified through reliability analysis.


Mathematics ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 948
Author(s):  
Yunlong Xu ◽  
Fei Lyu ◽  
Faxing Ding ◽  
Chenglu Liu ◽  
En Wang

This paper presents a numerical investigation of lightweight aggregate concrete-filled circular steel tubular (LACFCST) stub columns under axial compression. A finite 3D solid element model of the LACFCST stub column was established by adopting a plastic-damage constitutive model of lightweight aggregate concrete (LAC). The finite element model (FEM) analysis results revealed that the confinement effect of the steel tube on the infilled LAC was weaker than that on the infilled conventional concrete. A parametric study making use of 95 full-scale FEMs was conducted to investigate the influences of various design parameters of LACFCST stub columns on their ultimate axial bearing capacity and the composite actions. Moreover, a numerical model of the axial and transverse stress of steel tubes at the ultimate state of LACFCST columns was proposed using the regression method. Based on the equilibrium conditions and the proposed model, a practical design formula making use of an enhancement factor was derived to estimate the ultimate bearing capacity of LACFCST stub columns by using the superposition method. The validity of the proposed formula was verified against the experimental data of 49 LACFCST stub column specimens under the axial loading available in the literature. Meanwhile, the accuracy and conciseness of the proposed formula were evaluated by comparison with the formulas suggested by the existing design codes.


2019 ◽  
Vol 3 (Special Issue on First SACEE'19) ◽  
pp. 173-180
Author(s):  
Giorgia Di Gangi ◽  
Giorgio Monti ◽  
Giuseppe Quaranta ◽  
Marco Vailati ◽  
Cristoforo Demartino

The seismic performance of timber light-frame shear walls is investigated in this paper with a focus on energy dissipation and ductility ensured by sheathing-to-framing connections. An original parametric finite element model has been developed in order to perform sensitivity analyses. The model considers the design variables affecting the racking load-carrying capacity of the wall. These variables include aspect ratio (height-to-width ratio), fastener spacing, number of vertical studs and framing elements cross-section size. A failure criterion has been defined based on the observation of both the global behaviour of the wall and local behaviour of fasteners in order to identify the ultimate displacement of the wall. The equivalent viscous damping has been numerically assessed by estimating the damping factor which is in use in the capacity spectrum method. Finally, an in-depth analysis of the results obtained from the sensitivity analyses led to the development of a simplified analytical procedure which is able to predict the capacity curve of a timber light-frame shear wall.


Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4362
Author(s):  
Renata Kotynia ◽  
Hussien Abdel Baky ◽  
Kenneth W. Neale

This paper presents an investigation of the bond mechanism between carbon fibre reinforced polymer (CFRP) laminates, concrete and steel in the near-surface mounted (NSM) CFRP-strengthened reinforced concrete (RC) beam-bond tests. The experimental program consisting of thirty modified concrete beams flexurally strengthened with NSM CFRP strips was published in. The effects of five parameters and their interactions on the ultimate load carrying capacities and the associated bond mechanisms of the beams are investigated in this paper with consideration of the following investigated parameters: beam span, beam depth, longitudinal tensile steel reinforcement ratio, the bond length of the CFRP strips and compressive concrete strength. The longitudinal steel reinforcement was cut at the beam mid-span in four beams to investigate a better assessment of the influence of the steel reinforcement ratio on the bond behaviour of CFRP to concrete bond behaviour. The numerical analysis implemented in this paper is based on a nonlinear micromechanical finite element model (FEM) that was used for investigation of the flexural behaviour of NSM CFRP-strengthened members. The 3D model based on advanced CFRP to concrete bond responses was introduced to modelling of tested specimens. The FEM procedure presents the orthotropic behaviour of the CFRP strips and the bond response between the CFRP and concrete. Comparison of the experimental and numerical results revealed an excellent agreement that confirms the suitability of the proposed FE model.


2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Meixia Chen ◽  
Cong Zhang ◽  
Xiangfan Tao ◽  
Naiqi Deng

This paper studies the vibrational behavior and far-field sound radiation of a submerged stiffened conical shell at low frequencies. The solution for the dynamic response of the conical shell is presented in the form of a power series. A smeared approach is used to model the ring stiffeners. Fluid loading is taken into account by dividing the conical shell into narrow strips which are considered to be local cylindrical shells. The far-field sound pressure is solved by the Element Radiation Superposition Method. Excitations in two directions are considered to simulate the loading on the surface of the conical shell. These excitations are applied along the generator and normal to the surface of the conical shell. The contributions from the individual circumferential modes on the structural responses of the conical shell are studied. The effects of the external fluid loading and stiffeners are discussed. The results from the analytical models are validated by numerical results from a fully coupled finite element/boundary element model.


2011 ◽  
Vol 201-203 ◽  
pp. 2900-2903 ◽  
Author(s):  
Chui Huon Tina Ting ◽  
Hieng Ho Lau

Built-up sections are used to resist load induced in a structure when a single section is not sufficient to carry the design load for example roof trusses. In current North American Specification, the provision has been substantially taken from research in hot-rolled built-up members connected with bolts or welds [1]. The aim of this paper is to investigate on built-up back-to-back channels stub columns experimentally and theoretically using Effective Width Method and Direct Strength Method. Compression test was performed on 5 lipped channel and 5 back-to-back channels stub columns fabricated from cold-formed steel sheets of 1.2mm thicknesses. The test results indicated that local buckling is the dominant failure modes of stub columns. Therefore, Effective Width Method predicts the capacity of stub columns compared to Direct Strength Method. When compared to the average test results, results based on EWM are 5% higher while results based on DSM are 12% higher for stub column.


2014 ◽  
Vol 971-973 ◽  
pp. 380-389
Author(s):  
Jian Ning Wang ◽  
Gang Wu ◽  
Wei Yi Xie ◽  
Xin De Han ◽  
Ming Chao Gang

Abstract: The packer rubber stress in the bottom hole is more complex. Based on constitutive model of the packer rubber material, this paper determines such parameters as model constants, Poisson's ratio of rubber materials and elastic modulus by using experimental method, to build up the finite element model of center tube-rubber cylinder-casing for the purpose of stress analysis. Finally, the distribution regularity of rubber cylinder-casing contact stress and packer setting travel distance with varying loads is concluded. The results can provide the theoretical basis for further analysis of packer rubber sealing performance.


Sign in / Sign up

Export Citation Format

Share Document