scholarly journals Deposition, Characterization, and Modeling of Scandium-Doped Aluminum Nitride Thin Film for Piezoelectric Devices

Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6437
Author(s):  
Qiaozhen Zhang ◽  
Mingzhu Chen ◽  
Huiling Liu ◽  
Xiangyong Zhao ◽  
Xiaomei Qin ◽  
...  

In this work, we systematically studied the deposition, characterization, and crystal structure modeling of ScAlN thin film. Measurements of the piezoelectric device’s relevant material properties, such as crystal structure, crystallographic orientation, and piezoelectric response, were performed to characterize the Sc0.29Al0.71N thin film grown using pulsed DC magnetron sputtering. Crystal structure modeling of the ScAlN thin film is proposed and validated, and the structure–property relations are discussed. The investigation results indicated that the sputtered thin film using seed layer technique had a good crystalline quality and a clear grain boundary. In addition, the effective piezoelectric coefficient d33 was up to 12.6 pC/N, and there was no wurtzite-to-rocksalt phase transition under high pressure. These good features demonstrated that the sputtered ScAlN is promising for application in high-coupling piezoelectric devices with high-pressure stability.

Author(s):  
Andrzej Katrusiak

Since the late 1950's, high-pressure structural studies have become increasingly frequent, following the inception of opposed-anvil cells, development of efficient diffractometric equipment (brighter radiation sources both in laboratories and in synchrotron facilities, highly efficient area detectors) and procedures (for crystal mounting, centring, pressure calibration, collecting and correcting data). Consequently, during the last decades, high-pressure crystallography has evolved into a powerful technique which can be routinely applied in laboratories and dedicated synchrotron and neutron facilities. The variation of pressure adds a new thermodynamic dimension to crystal-structure analyses, and extends the understanding of the solid state and materials in general. New areas of thermodynamic exploration of phase diagrams, polymorphism, transformations between different phases and cohesion forces, structure–property relations, and a deeper understanding of matter at the atomic scale in general are accessible with the high-pressure techniques in hand. A brief history, guidelines and requirements for performing high-pressure structural studies are outlined.


Author(s):  
Dominique Laniel ◽  
Jannes Binck ◽  
Björn Winkler ◽  
Sebastian Vogel ◽  
Timofey Fedotenko ◽  
...  

Carbonates containing CO4 groups as building blocks have recently been discovered. A new orthocarbonate, Sr2CO4 is synthesized at 92 GPa and at a temperature of 2500 K. Its crystal structure was determined by in situ synchrotron single-crystal X-ray diffraction, selecting a grain from a polycrystalline sample. Strontium orthocarbonate crystallizes in the orthorhombic crystal system (space group Pnma) with CO4, SrO9 and SrO11 polyhedra as the main building blocks. It is isostructural to Ca2CO4. DFT calculations reproduce the experimental findings very well and have, therefore, been used to predict the equation of state, Raman and IR spectra, and to assist in the discussion of bonding in this compound.


2007 ◽  
Vol 1034 ◽  
Author(s):  
Yuichi Shimakawa

AbstractA new multiferroic compound Bi2NiMnO6 was synthesized in both bulk and thin-film forms. Bulk samples were prepared under a high pressure condition at 6 GPa, and thin-film samples were epitaxially grown on single-crystal SrTiO3 substrates by a pulsed-laser deposition method. The crystal structure of the material is a double perovskite, in which Ni2+ and Mn4+ ions are ordered in a rock-salt configuration. Bi3+ ions at the A-site cause a noncentrosymmetric (C2) structural distortion which allows a spontaneous ferroelectric polarization at room temperature. Ni2+–O–Mn4+ magnetic paths lead to ferromagnetism through the superexchange interaction according to the Kanamori-Goodenough rule. A coupling between the ferromagnetic and ferroelectric interactions appears to exist, but it is quite small.


2000 ◽  
Vol 15 (2) ◽  
pp. 518-529 ◽  
Author(s):  
B. Vaidhyanathan ◽  
S. Asokan ◽  
K. J. Rao

High-field and high-pressure behavior of microwave-prepared xCuO:(45−x) PbO: 55V2O5 (x = 0 to 20) glasses were investigated for the first time. It was found that the addition of CuO significantly alters the nonlinear I–V characteristics of these glasses; while the glasses with x = 10 exhibit a current-controlled negative resistance behavior associated with a memory type transition, glasses with x = 15 show a threshold-type behavior. Remarkable differences were also noticed in the high-pressure electrical resistivity behavior between the low- and high-CuO-containing glasses. Corroborative thermal, electrical, microscopic, and spectroscopic measurements were carried out to understand the structure–property relations. A structural model was proposed, which is based on the chemical nature of the constituents present in the glasses. The model accounts well for the various observed properties of these glasses.


Author(s):  
Frastica Deswardani ◽  
Helga Dwi Fahyuan ◽  
Rimawanto Gultom ◽  
Eif Sparzinanda

Telah dilakukan penelitian mengenai pengaruh konsentrasi doping karbon pada lapisan tipis TiO2 yang ditumbuhkan dengan metode spray terhadap struktur kristal dan morfologi TiO2. Hasil karakterisasi SEM menunjukkan bahwa penambahan doping karbon dapat meningkatkan ukuran butir. Lapisan TiO2 doping karbon 8% diperoleh ukuran butir terbesar adalah 1.35 μm, sedangkan ukuran tekecilnya adalah 0.45 μm. Sementara itu, untuk lapisan tipis TiO2 didoping karbon 15% memiliki ukuran butir terbesar yaitu 1.76 μm dan terkecil 0.9 μm. Hasil XRD menunjukkan seluruh puncak difraksi lapisan tipis TiO2 dengan doping karbon 8% dan 15% merupakan TiO2 anatase. Ukuran kristal lapisan TiO2 didoping karbon 8% diperoleh sebesar 638,08 Å dan untuk pendopingan 15% karbon ukuran kristal lapisan tipis TiO2 adalah 638,09 Å, hal ini menunjukkan ukuran kristal kedua sampel tidak mengalami perubahan yang signifikan.   TiO2 thin film with carbon doping has been successfully grown by spray method. The research on the effect of carbon doping on crystal structure and morfology of TiO2 has been prepared by varying carbon concentration (8% and 15% carbon). Analysis of SEM showed that the addition of carbon may increase the grain size. Thin film of TiO2 doped carbon 8% has the largest grain size 1.35 μm, while the smallest grain size is 0.45 μm. Meanwhile, for thin film TiO2 doped carbon 15% has the largest grain size 1.76 μm and smallest 0.9 μm. The XRD results showed the entire diffraction peak of thin film TiO2 doped carbon 8% and 15% were TiO2 anatase. The crystal size of thin film TiO2 doped carbon 8% was obtained at 638.08 Å and for thin film TiO2 doped carbon 15% the crystalline size of TiO2 thin film was 638.09 Å, this shows that the crystal size of both samples did not change significantly.    


2020 ◽  
Author(s):  
Keishiro Yamashita ◽  
Kazuki Komatsu ◽  
Hiroyuki Kagi

An crystal-growth technique for single crystal x-ray structure analysis of high-pressure forms of hydrogen-bonded crystals is proposed. We used alcohol mixture (methanol: ethanol = 4:1 in volumetric ratio), which is a widely used pressure transmitting medium, inhibiting the nucleation and growth of unwanted crystals. In this paper, two kinds of single crystals which have not been obtained using a conventional experimental technique were obtained using this technique: ice VI at 1.99 GPa and MgCl<sub>2</sub>·7H<sub>2</sub>O at 2.50 GPa at room temperature. Here we first report the crystal structure of MgCl2·7H2O. This technique simultaneously meets the requirement of hydrostaticity for high-pressure experiments and has feasibility for further in-situ measurements.


2020 ◽  
Author(s):  
Ruobin Dai ◽  
Hongyi Han ◽  
Tianlin Wang ◽  
Jiayi Li ◽  
Chuyang Y. Tang ◽  
...  

Commercial polymeric membranes are generally recognized to have low sustainability as membranes need to be replaced and abandoned after reaching the end of their life. At present, only techniques for downcycling end-of-life high-pressure membranes are available. For the first time, this study paves the way for upcycling fouled/end-of-life low-pressure membranes to fabricate new high-pressure membranes for water purification, forming a closed eco-loop of membrane recycling with significantly improved sustainability.


2019 ◽  
Vol 74 (4) ◽  
pp. 357-363
Author(s):  
Daniela Vitzthum ◽  
Hubert Huppertz

AbstractThe mixed cation triel borate Ga4In4B15O33(OH)3 was synthesized in a Walker-type multianvil apparatus at high-pressure/high-temperature conditions of 12.5 GPa and 1300°C. Although the product could not be reproduced in further experiments, its crystal structure could be reliably determined via single-crystal X-ray diffraction data. Ga4In4B15O33(OH)3 crystallizes in the tetragonal space group I41/a (origin choice 2) with the lattice parameters a = 11.382(2), c = 15.244(2) Å, and V = 1974.9(4) Å3. The structure of the quaternary triel borate consists of a complex network of BO4 tetrahedra, edge-sharing InO6 octahedra in dinuclear units, and very dense edge-sharing GaO6 octahedra in tetranuclear units.


Sign in / Sign up

Export Citation Format

Share Document