scholarly journals The Use of ZrO2 Waste for the Electrolytic Production of Composite Ni–P–ZrO2 Powder

Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6597
Author(s):  
Jolanta Niedbała ◽  
Magdalena Popczyk ◽  
Grzegorz Benke ◽  
Hubert Okła ◽  
Jadwiga Gabor ◽  
...  

Ni–P–ZrO2 composite powder was obtained from a galvanic nickel bath with ZrO2 powder. Production was conducted under galvanostatic conditions. The Ni–P–ZrO2 composite powder was characterized by the presence of ZrO2 particles covered with electrolytical nanocrystalline Ni–P coating. The chemical composition (XRF method), phase structure (XRD method) and morphology (SEM) of Ni–P–ZrO2 and the distribution of elements in the powder were all investigated. Based on the analyses, it was found that the obtained powder contained about 50 weight % Zr and 40 weight % Ni. Phase structure analysis showed that the basic crystalline component of the tested powder is a mixed oxide of zirconium and yttrium Zr0.92Y0.08O1.96. In addition, the sample contains very large amounts of amorphous compounds (Ni–P). The mechanism to produce the composite powder particles is explained on the basis of Ni2+ ions adsorption process on the metal oxide particles. Current flow through the cell forces the movement of particles in the bath. Oxide grains with adsorbed nickel ions were transported to the cathode surface. Ni2+ ions were discharged. The oxide particles were covered with a Ni–P layer and the heavy composite grains of Ni–P–ZrO2 flowed down to the bottom of the cell.

2011 ◽  
Vol 672 ◽  
pp. 133-136
Author(s):  
Nicolaie Jumate ◽  
Ioan Vida-Simiti ◽  
Dorel Nemeş ◽  
György Thalmaier ◽  
Niculina Sechel ◽  
...  

The paper presents a preliminary study on the obtaining of a composite powder by an electrolytic method. The composite powder particles are composed of iron nickel alloy that represents the matrix of the composite, and titanium carbide as the reinforcement. The matrix was obtained by electrolytic co-deposition from pure iron and nickel, in form of consumable electrodes. The titanium carbide powder is in suspension in the electrolyte. By the migration of metallic ions towards the cathode, the iron- nickel alloy is formed and, by simultaneously driving the carbide particles found in the electrolyte onto the cathode, the composite powder is obtained. The resulted composite powders were characterized by optical and electron microscopy. The influence of obtaining conditions over the morphology and structure of composite powders is emphased.


2017 ◽  
Vol 33 (11) ◽  
pp. 1323-1328 ◽  
Author(s):  
Dengshan Zhou ◽  
Hongwei Geng ◽  
Wei Zeng ◽  
Deliang Zhang ◽  
Charlie Kong ◽  
...  

2011 ◽  
Vol 675-677 ◽  
pp. 723-726
Author(s):  
Rui Di Li ◽  
Yu Sheng Shi ◽  
Zhi Gang Wang ◽  
Jin Hui Liu

Selective laser melting (SLM) is an advanced manufacturing technology, which is flexible in building three-dimensional (3D) metallic parts. In this work, SLM experiment of a multicomponent Ni-based composite powder, which consisted of Ni, Cr, Fe, and Al powders, was conducted with favorable forming ability. The SEM, EDX, and XRD analysis were used to characterize the surface morphology, microstructure, and phase structure of as-formed Ni-based alloy. The XRD analysis showed that the as-received phase structure was Ni based solid solution. The SEM analysis of surface morphology revealed that metal agglomerates or balls were very easily formed in SLM surface, between which some pore channels existed. The surface condition and porosity could be improved by increasing laser energy input, because of a higher molten temperature and accordingly better flowing and flatting characteristics. The SEM analysis of microstructure showed that the crystalline grains were in cellular and columnar shape. Moreover, the grains were very fine with average dimensions about 5μm, due to the rapid cooling rate with rapid laser beam moving. The EDX analysis illustrated that the element contents of starting powder were uniformly distributed in as-prepared sample. A case investigation into SLM of this composite powder to form an impeller was also performed.


2021 ◽  
Author(s):  
Qazi Sabir

Simulated wastewater containing Ni++ and Zn++ was treated using an electrochemical cell. Porous aluminum cathode and porous stainless steel anode were used in a flow-through configuration. For porous catholdes, both aluminium foam and corrugated aluminum plates having perforations were used. To study the effects of applied voltage and volumetric liquid flux on the removal of Ni++ and Zn++, the electrochemical cell was operated for 48 hours at different applied voltages of 5, 10, 15, 20 and 25 V, and at different volumetric liquid fluxes both in the laminar (0.00471 and 0.00943 m³.m-².s-¹) and turbulent regimes (0.01414, 0.01886 and 0.02357 m³.m-².s-¹). For the maximum removal of both nickel and zinc ions, the optimum applied voltage and volumetric liquid flux were found to be 12 V and 0.02357 m³.m-².s-¹, respectively; under these operating conditions, the concentrations of Ni++ and Zn++ in the simulated wastewater were reduced by 85.5% and 98%, respectively. Operating beyond an applied voltage of 12 V, the removal of Zn++ was slightly improved and achieved a maximum value of 99.05% at 25 V; however, an opposite trend was observed in case of Ni++ removal, which finally decreased to 56% at 25 V., because of the excessive precipitation of Ni++ as nickel hydoroxide.


2001 ◽  
Vol 44 (24) ◽  
pp. 4667-4677 ◽  
Author(s):  
A.M. Ahmed ◽  
R.H. Rangel ◽  
V.V. Sobolev ◽  
J.M. Guilemany

2011 ◽  
Vol 391-392 ◽  
pp. 789-792
Author(s):  
Shu Dong Geng ◽  
Fu Sheng Zhang ◽  
Yu Zhang ◽  
Lian Fa Chen ◽  
Wei Wang

SnO2 has been widely used in the industry, and is important materials in the fields of electron, ceramics and chemistry. SnCl4 was employed as raw material, acrylamide and N,N’-methylenediacrylamide were used as monomer and lattice reagent, respectively. In present work, SnO2 nano-sized powder was prepared by the polymer-network method. The precursor was characterized using DTA-TG. The phase structure and particle size of the powder was determined by XRD and TEM, respectively. The results indicated that the SnO2 powder with particle diameter size smaller than 50nm was obtained when the ratio of monomer and lattice reagent was 5:1, and the sintering temperature was 500 °C. Moreover, the distribution of powder particles was uniform and the specific surface area was big.


2020 ◽  
Vol 19 (6) ◽  
pp. 475-479
Author(s):  
V. K. Sheleg ◽  
M. A. Levantsevich ◽  
Y. V. Pilipchuk ◽  
M. A. Kravchuk ◽  
I. A. Bogdanovich ◽  
...  

Abstract. A device design is proposed that makes it possible to obtain composite castings of sliding bearings based on babbitt by mixing alloying additives from antifriction powders of solid lubricants (graphite, molybdenum disulfide, etc.) into the melt, having a density significantly lower than the density of babbitt itself.  The principle of mixing is based on the use of  numerous turbulent flows resulting from the rotation of a gating rod with a wire pile in the melt material, the packing density coefficient of which is not less than 0.1. Due to the suction effect of these flows, non-metallic particles of solid lubricant powder do not float to the surface of the melt and, after crystallization, remain in the body of the casting. The supply of alloying powder of solid lubricant is carried out simultaneously with the supply of  the babbitt melt through the central and distribution gating channels made in a rotating rod. Under the action of centrifugal forces, powder particles and melt material flow through distribution channels to the walls of the mold (mold), passing through the rotation zone of the metal pile. In this case, intensive mixing of the powder particles with the melt material occurs due to the suction effect of turbulent flows arising behind the moving pile. In addition, as a result of the rotation of the wire pile, dendritic constituents are crushed in babbitt castings.  Metallographic studies of the castings obtained on the developed device have shown that the structure of the casting obtained by traditional technology contains large quantities of solid crystals of intermetallic compounds SnSb and Cu3Sn, while in the structure of the casting obtained using the proposed device, along with the aforementioned intermetallic compounds, particles of solid lubricant C + MoS2 powder embedded in the crystallized melt are observed. 


2021 ◽  
Author(s):  
Qazi Sabir

Simulated wastewater containing Ni++ and Zn++ was treated using an electrochemical cell. Porous aluminum cathode and porous stainless steel anode were used in a flow-through configuration. For porous catholdes, both aluminium foam and corrugated aluminum plates having perforations were used. To study the effects of applied voltage and volumetric liquid flux on the removal of Ni++ and Zn++, the electrochemical cell was operated for 48 hours at different applied voltages of 5, 10, 15, 20 and 25 V, and at different volumetric liquid fluxes both in the laminar (0.00471 and 0.00943 m³.m-².s-¹) and turbulent regimes (0.01414, 0.01886 and 0.02357 m³.m-².s-¹). For the maximum removal of both nickel and zinc ions, the optimum applied voltage and volumetric liquid flux were found to be 12 V and 0.02357 m³.m-².s-¹, respectively; under these operating conditions, the concentrations of Ni++ and Zn++ in the simulated wastewater were reduced by 85.5% and 98%, respectively. Operating beyond an applied voltage of 12 V, the removal of Zn++ was slightly improved and achieved a maximum value of 99.05% at 25 V; however, an opposite trend was observed in case of Ni++ removal, which finally decreased to 56% at 25 V., because of the excessive precipitation of Ni++ as nickel hydoroxide.


Sign in / Sign up

Export Citation Format

Share Document