scholarly journals Chitosan Biocomposites for the Adsorption and Release of H2S

Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6701
Author(s):  
Mary Batista ◽  
Moisés L. Pinto ◽  
Fernando Antunes ◽  
João Pires ◽  
Silvia Carvalho

The search for H2S donors has been increasing due to the multiple therapeutic effects of the gas. However, the use of nanoporous materials has not been investigated despite their potential. Zeolites and activated carbons are known as good gas adsorbents and their modification with chitosan may increase the material biocompatibility and simultaneously its release time in aqueous solution, thus making them good H2S donors. Herein, we modified with chitosan a series of A zeolites (3A, 4A and 5A) with different pore sizes and an activated carbon obtained from glycerin. The amount of H2S adsorbed was evaluated by a volumetric method and their release capacity in aqueous solution was measured. These studies aimed to verify which of the materials had appropriate H2S adsorption/release properties to be considered a potential H2S donor. Additionally, cytotoxicity assays using HeLa cells were performed. Considering the obtained results, the chitosan composite with the A zeolite with the larger pore opening was the most promising material to be used as a H2S donor so a further cytotoxicity assay using H2S loaded was conducted and no toxicity was observed.

2000 ◽  
Vol 18 (9) ◽  
pp. 823-837 ◽  
Author(s):  
Eugeniusz Milchert ◽  
Waldemar Goc ◽  
Robert Pelech

2009 ◽  
Vol 100 (1-2) ◽  
pp. 65-71 ◽  
Author(s):  
Rongjun Qu ◽  
Changmei Sun ◽  
Minghua Wang ◽  
Chunnuan Ji ◽  
Qiang Xu ◽  
...  

2013 ◽  
Vol 789 ◽  
pp. 176-179 ◽  
Author(s):  
Eny Kusrini ◽  
Nofrijon Sofyan ◽  
Dwi Marta Nurjaya ◽  
Santoso Santoso ◽  
Dewi Tristantini

Hydroxyapatite/chitosan (HApC) composite has been prepared by precipitation method and used for removal of heavy metals (Cr6+, Zn2+and Cd2+) from aqueous solution. The HAp and 3H7C composite with HAp:chitosan ratio of 3:7 (wt%) were characterized by Fourier transform infrared spectroscopy, X-ray diffraction and scanning electron microscopy-energy dispersive X-ray spectroscopy. The SEM results showed that HAp is spherical-shaped and crystalline, while chitosan has a flat structure. SEM micrograph of 3H7C composite reveals crystalline of HAp uniformly spread over the surface of chitosan. The crystal structure of HAp is maintained in 3H7C composite. Chitosan affects the adsorption capacity of HAp for heavy metal ions; it binds the metal ions as well as HAp. The kinetic data was best described by the pseudo-second order. Surface adsorption and intraparticle diffusion take place in the mechanism of adsorption process. The binding of HAp powder with chitosan made the capability of composite to removal of Cr6+, Zn2+and Cd2+from aqueous solution effective. The order of removal efficiency (Cr6+> Cd2+> Zn2+) was observed.


2014 ◽  
Vol 9 (1) ◽  
pp. 166-174 ◽  
Author(s):  
Rajeshwar M. Shrestha ◽  
Margit Varga ◽  
Imre Varga ◽  
Amar P. Yadav ◽  
Bhadra P. Pokharel ◽  
...  

Activated carbons were prepared from Lapsi seed stone by the treatment with H2SO4 and HNO3 for the removal of Ni (II) ions from aqueous solution. Two activated carbon have been prepared from Lapsi seed stones by treating with conc.H2SO4 and a mixture of H2SO4 and HNO3 in the ratio of 1:1 by weight for removal of Ni(II) ions. Chemical characterization of the resultant activated carbons was studied by Fourier Transform Infrared Spectroscopy and Boehm titration which revealed the presence of oxygen containing surface functional groups like carboxyl, lactones and phenols in the carbons. The optimum pH for nickel adsorption is found to be 5. The adsorption data were better fitted with the Langmuir equations than Freundlich adsorption equation to describe the equilibrium isotherms. The maximum adsorption capacity of Ni (II) on the resultant activated carbons was 28.25.8 mg g-1 with H2SO4 and 69.49 mg g-1 with a mixture of H2SO4 and HNO3. The waste material used in the preparation of the activated carbons is inexpensive and readily available. Hence the carbons prepared from Lapsi seed stones can act as potential low cost adsorbents for the removal of Ni (II) from water. DOI: http://dx.doi.org/10.3126/jie.v9i1.10680Journal of the Institute of Engineering, Vol. 9, No. 1, pp. 166–174


2017 ◽  
Vol 243 ◽  
pp. 799-809 ◽  
Author(s):  
Mounir Daoud ◽  
Oumessaâd Benturki ◽  
Zoubida Kecira ◽  
Pierre Girods ◽  
André Donnot

2013 ◽  
Vol 864-867 ◽  
pp. 1509-1512
Author(s):  
Xue Mei Zhang ◽  
Yan Zhang ◽  
Di Fan

This paper presents the adsorption behaviors of humic acid (HA) on coal ashes and powdered activated carbons (PACs). A bituminous coal, with or without calcium-loading, was used as a feedstock for coal ash preparation. The working solution of HA with a concentration of 20 mg/L was used in all adsorption tests. The results showed that calcium-enriched coal ash (CECA) gave rise to the removal rate of HA as high as 84.05%, much higher than those of raw coal ash (RCA) and PACs. The impacts of solution pH and adsorbent dosage on HA adsorption capacity were also investigated. It was found that lower pH facilitated to the removal of HA from aqueous solution by means of CECA, and the optimal CECA dosage was about 1.0g/L at pH 7.00. The data obtained in this study suggested that calcium-enriched coal ash could be useful and cost-effective in the treatment of wastewaters containing HA-like organic macro-molecules.


2016 ◽  
Vol 19 ◽  
pp. 12-22 ◽  
Author(s):  
El-Said I. El-Shafey ◽  
Haider A. J. Al-Lawati ◽  
Wafa S. H. Al-Saidi

2016 ◽  
Vol 10 (6) ◽  
pp. 15-21 ◽  
Author(s):  
Mohammad Ghashghaee ◽  
Vahid Farzaneh ◽  
◽  

2017 ◽  
Vol 96 ◽  
pp. 459-465 ◽  
Author(s):  
Seda Çınar ◽  
Ümit H. Kaynar ◽  
Tülin Aydemir ◽  
Sermin Çam Kaynar ◽  
Mehmet Ayvacıklı

Sign in / Sign up

Export Citation Format

Share Document