Study on Effect of GGBS, Molarity of NaOH Solution and Curing Regime on Compressive Strength and Microstructure of Fly Ash-GGBS Based Geopolymer Concrete

2021 ◽  
pp. 609-617
Author(s):  
Kunal Pradhan ◽  
Bulu Pradhan
Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7109
Author(s):  
Wei Yang ◽  
Pinghua Zhu ◽  
Hui Liu ◽  
Xinjie Wang ◽  
Wei Ge ◽  
...  

Geopolymer binder is expected to be an optimum alternative to Portland cement due to its excellent engineering properties of high strength, acid corrosion resistance, low permeability, good chemical resistance, and excellent fire resistance. To study the sulfuric acid corrosion resistance of geopolymer concrete (GPC) with different binding materials and concentrations of sodium hydroxide solution (NaOH), metakaolin, high-calcium fly ash, and low-calcium fly ash were chosen as binding materials of GPC for the geopolymerization process. A mixture of sodium silicate solution (Na2SiO3) and NaOH solution with different concentrations (8 M and 12 M) was selected as the alkaline activator with a ratio (Na2SiO3/NaOH) of 1.5. GPC specimens were immersed in the sulfuric acid solution with the pH value of 1 for 6 days and then naturally dried for 1 day until 98 days. The macroscopic properties of GPC were characterized by visual appearance, compressive strength, mass loss, and neutralization depth. The materials were characterized by SEM, XRD, and FTIR. The results indicated that at the immersion time of 28 d, the compressive strength of two types of fly ash-based GPC increased to some extent due to the presence of gypsum, but this phenomenon was not observed in metakaolin-based GPC. After 98 d of immersion, the residual strength of fly ash based GPC was still higher, which reached more than 25 MPa, while the metakaolin-based GPC failed. Furthermore, due to the rigid 3D networks of aluminosilicate in fly ash-based GPC, the mass of all GPC decreased slightly during the immersion period, and then tended to be stable in the later period. On the contrary, in metakaolin-based GPC, the incomplete geopolymerization led to the compressive strength being too low to meet the application of practical engineering. In addition, the compressive strength of GPC activated by 12 M NaOH was higher than the GPC activated by 8 M NaOH, which is owing to the formation of gel depended on the concentration of alkali OH ion, low NaOH concentration weakened chemical reaction, and reduced compressive strength. Additionally, according to the testing results of neutralization depth, the neutralization depth of high-calcium fly ash-based GPC activated by 12 M NaOH suffered acid attack for 98 d was only 6.9 mm, which is the minimum value. Therefore, the best performance was observed in GPC prepared with high-calcium fly ash and 12 M NaOH solution, which is attributed to gypsum crystals that block the pores of the specimen and improve the microstructure of GPC, inhibiting further corrosion of sulfuric acid.


2017 ◽  
Vol 10 (6) ◽  
pp. 1174-1181 ◽  
Author(s):  
C. N. LIVI ◽  
W. L. REPETTE

Abstract The effect of alkali concentration and curing temperature regime on fly ash-based geopolymer pastes was investigated in this study by using NaOH solutions. Prismatic specimens were molded, cured at 65 °C and 85 °C and submitted to flexural and compressive strength tests. Unreacted fly ash and geopolymers were characterized by X-ray diffraction and thermogravimetric analysis. In general, the mechanical strength was enhanced by increasing the molar concentration and the curing temperature. This trend was confirmed by thermogravimetric data. However, for a lower amount of NaOH there were no significant differences between the strength results. The mixture with the highest strength was obtained with the 16 M NaOH solution and curing temperature of 85 °C, which resulted in flexural strength of 4.20 MPa, compressive strength of 21.35 MPa and also the highest weight loss of 9.89%.


2021 ◽  
Vol 11 (18) ◽  
pp. 8722
Author(s):  
Rana Muhammad Waqas ◽  
Faheem Butt ◽  
Xulong Zhu ◽  
Tianshui Jiang ◽  
Rana Faisal Tufail

Geopolymer concrete (GPC), also known as an earth friendly concrete, has been under continuous study due to its environmental benefits and potential as a sustainable alternative to conventional concrete construction. However, there is still a lack of comprehensive studies focusing on the influence of all the design mix variables on the fresh and strength properties of GPC. GPC is still a relatively new material in terms of field application and has yet to secure international acceptance as a construction material. Therefore, it is important that comprehensive studies be carried out to collect more reliable information to expand this relatively new material technology to field and site applications. This research work aims to provide a comprehensive study on the factors affecting the fresh and hardened properties of ambient cured fly ash and slag based geopolymer concrete (FS-GPC). Industrial by-products, fly ash from thermal power plants, and ground granulated blast furnace slag from steel industries were utilized to produce ambient cured FS-GPC. A series of experiments were conducted to study the effect of various parameters, i.e., slag content (10%, 20%, 30%, and 50%), amount of alkaline activator solution (AAS) (35% and 40%), sodium silicate (SS) to sodium hydroxide (SH) ratio (SS/SH = 2.0, 2.5 and 3.0), sodium hydroxide concentration (10 M, 12 M, and 14 M) and addition of extra water on fresh and mechanical properties of FS-GPC. The workability of the fresh FS-GPC mixes was measured by the slump cone test. The mechanical properties of the mixes were evaluated by compressive strength, split tensile strength, flexure strength, and static modulus tests. The results revealed that workability of FS-GPC is greatly reduced by increasing slag content, molarity of NaOH solution, and SS/SH ratio. The compressive strength was improved with an increase in the molarity of NaOH solution and slag content and a decrease in AAS content from 40% to 35%. However, the influence of SS/SH ratio on mechanical properties of FS-GPC has a varying effect. The addition of extra water to enhance the workability of GPC matrix caused a decrease in the compressive strength. The validity of the equations suggested by previous studies to estimate the tensile and flexural strength and elastic modulus of FS-GPC mixes were also evaluated. Based on the test results of this study, empirical equations are proposed to predict the splitting tensile strength, flexural strength, and elastic modulus of ambient cured FS-GPC. The optimal mixtures of FS-GPC in terms of workability and mechanical properties were also proposed for the field applications.


Buildings ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 101 ◽  
Author(s):  
Peiman Azarsa ◽  
Rishi Gupta

Geopolymer Concrete (GPC) as a cement-less construction material has attracted worldwide attention due to its lower carbon footprint. There are numerous studies reported on GPC made using different by-products including fly-ash. However, since the use of bottom-ash is comparatively limited, making potassium-based GPC using this waste can be an alternative to Portland Cement Concrete (PCC). In this study, two methods of accelerated curing were used to determine the influence of elevated temperature on the compressive strength of GPC, composed of 50% bottom-ash and 50% fly-ash. GPC specimens were cured using various temperatures including ambient, 30 °C, 45 °C, 60 °C, and 80 °C for 24 h, all followed by 28 days of ambient curing. The highest compressive strength was obtained with steam curing at a temperature of 80 °C for a duration of 24 h. It is of great significance to evaluate elastic modulus of the concrete mixture so that the short-term rigidity of structures subjected to elongation, bending, or compression can be predicted. In this study, a longitudinal Resonant Frequency Test (RFT) as a non-destructive test (NDT) was used to calculate the elastic modulus of both GPC and a comparative PCC mix. Based on the results, PCC had higher resonant frequency (by about 1000 Hz) compared to GPC. A review of empirical models for predicting GPC’s elastic modulus showed that all of the predicted elastic modulus values were lower than experimental values.


2018 ◽  
Vol 147 ◽  
pp. 01004 ◽  
Author(s):  
Herwani ◽  
Ivindra Pane ◽  
Iswandi Imran ◽  
Bambang Budiono

Geopolymer concrete is a new material made by activating the raw materials which contain many elements of silica and alumina. Compressive strength of geopolymer concrete produced was influenced by the concentration of the activator solution. This paper presents an experimental investigation into fly ash-based geopolymer concrete. Research objective was to investigate the effects of alkaline activator solution (AAS) molarity on compressive strength of geopolymer concrete. Variable of the test were a solution to sodium hydroxide was chosen as the activator solution. Concentration of sodium hydroxide solution used was 10 M, 12 M and 14 M with ambient curing. The specimen is made of concrete cylinder with diameter 10 cm and height 20 cm as many as 9 pieces each variable. Compressive strength tests is performed when the concrete is 7, 14, and 28 days old. Results of the test are indicated that the increasing of sodium hydroxide (NaOH) solution concentration leads to improve the compressive strength of geopolymer concrete. The optimal compressive strength of geopolymer concrete was achieved at a concentration of sodium hydroxide solution (NaOH) of 12 M. Geopolymer concretes compressive strength only achieves around 50-60% of the planned.


Author(s):  
A. Z. Mohd Ali ◽  
◽  
N. A. Jalaluddin ◽  
N. Zulkiflee ◽  
◽  
...  

The production of ordinary Portland cement (OPC) consumes considerable amount of natural resources, energy and at the same time contribute in high emission of CO2 to the atmosphere. A new material replacing cement as binder called geopolymer is alkali-activated concrete which are made from fly ash, sodium silicate and sodium hydroxide (NaOH). The alkaline solution mixed with fly ash producing alternative binder to OPC binder in concrete named geopolymer paste. In the process, NaOH was fully dissolved in water and cooled to room temperature. This study aims to eliminate this process by using NaOH in solid form together with fly ash before sodium silicate liquid and water poured into the mixture. The amount of NaOH solids were based on 10M concentration. The workability test is in accordance to ASTM C230. Fifty cubic mm of the geopolymer paste were prepared which consists of fly ash to alkaline solution ratio of 1: 0.5 and the curing regime of 80℃ for 24 hours with 100% humidity were implemented. From laboratory test, the workability of dry method geopolymer paste were decreased. The compressive strength of the dry mix of NaOH showed 55% and the workability has dropped to 58.4%, it showed strength reduction compared to the wet mix method.


2021 ◽  
Vol 11 (7) ◽  
pp. 3032
Author(s):  
Tuan Anh Le ◽  
Sinh Hoang Le ◽  
Thuy Ninh Nguyen ◽  
Khoa Tan Nguyen

The use of fluid catalytic cracking (FCC) by-products as aluminosilicate precursors in geopolymer binders has attracted significant interest from researchers in recent years owing to their high alumina and silica contents. Introduced in this study is the use of geopolymer concrete comprising FCC residue combined with fly ash as the requisite source of aluminosilicate. Fly ash was replaced with various FCC residue contents ranging from 0–100% by mass of binder. Results from standard testing methods showed that geopolymer concrete rheological properties such as yield stress and plastic viscosity as well as mechanical properties including compressive strength, flexural strength, and elastic modulus were affected significantly by the FCC residue content. With alkali liquid to geopolymer solid ratios (AL:GS) of 0.4 and 0.5, a reduction in compressive and flexural strength was observed in the case of geopolymer concrete with increasing FCC residue content. On the contrary, geopolymer concrete with increasing FCC residue content exhibited improved strength with an AL:GS ratio of 0.65. Relationships enabling estimation of geopolymer elastic modulus based on compressive strength were investigated. Scanning electron microscope (SEM) images and X-ray diffraction (XRD) patterns revealed that the final product from the geopolymerization process consisting of FCC residue was similar to fly ash-based geopolymer concrete. These observations highlight the potential of FCC residue as an aluminosilicate source for geopolymer products.


2016 ◽  
Vol 857 ◽  
pp. 400-404
Author(s):  
Tian Yu Xie ◽  
Togay Ozbakkaloglu

This paper presents the results of an experimental study on the behavior of fly ash-, bottom ash-, and blended fly and bottom ash-based geopolymer concrete (GPC) cured at ambient temperature. Four bathes of GPC were manufactured to investigate the influence of the fly ash-to-bottom ash mass ratio on the microstructure, compressive strength and elastic modulus of GPC. All the results indicate that the mass ratio of fly ash-to-bottom ash significantly affects the microstructure and mechanical properties of GPCs


Polymers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 900
Author(s):  
Chamila Gunasekara ◽  
Peter Atzarakis ◽  
Weena Lokuge ◽  
David W. Law ◽  
Sujeeva Setunge

Despite extensive in-depth research into high calcium fly ash geopolymer concretes and a number of proposed methods to calculate the mix proportions, no universally applicable method to determine the mix proportions has been developed. This paper uses an artificial neural network (ANN) machine learning toolbox in a MATLAB programming environment together with a Bayesian regularization algorithm, the Levenberg-Marquardt algorithm and a scaled conjugate gradient algorithm to attain a specified target compressive strength at 28 days. The relationship between the four key parameters, namely water/solid ratio, alkaline activator/binder ratio, Na2SiO3/NaOH ratio and NaOH molarity, and the compressive strength of geopolymer concrete is determined. The geopolymer concrete mix proportions based on the ANN algorithm model and contour plots developed were experimentally validated. Thus, the proposed method can be used to determine mix designs for high calcium fly ash geopolymer concrete in the range 25–45 MPa at 28 days. In addition, the design equations developed using the statistical regression model provide an insight to predict tensile strength and elastic modulus for a given compressive strength.


Sign in / Sign up

Export Citation Format

Share Document