scholarly journals 3D Printed In Vitro Dentin Model to Investigate Occlusive Agents against Tooth Sensitivity

Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7255
Author(s):  
Shiva Naseri ◽  
Megan E. Cooke ◽  
Derek H. Rosenzweig ◽  
Maryam Tabrizian

Tooth sensitivity is a painful and very common problem. Often stimulated by consuming hot, cold, sweet, or acidic foods, it is associated with exposed dentin microtubules that are open to dental pulp. One common treatment for tooth hypersensitivity is the application of occlusive particles to block dentin microtubules. The primary methodology currently used to test the penetration and occlusion of particles into dentin pores relies upon dentin discs cut from extracted bovine/human teeth. However, this method is limited due to low accessibility to the raw material. Thus, there is a need for an in vitro dentin model to characterize the effectiveness of occlusive agents. Three-dimensional printing technologies have emerged that make the printing of dentin-like structures possible. This study sought to develop and print a biomaterial ink that mimicked the natural composition and structure of dentin tubules. A formulation of type I collagen (Col), nanocrystalline hydroxyapatite (HAp), and alginate (Alg) was found to be suitable for the 3D printing of scaffolds. The performance of the 3D printed dentin model was compared to the natural dentin disk by image analysis via scanning electron microscopy (SEM), both pre- and post-treatment with occlusive microparticles, to evaluate the degree of dentinal tubule occlusion. The cytocompatibility of printed scaffolds was also confirmed in vitro. This is a promising biomaterial system for the 3D printing of dentin mimics.

Cartilage ◽  
2021 ◽  
pp. 194760352110495
Author(s):  
Xue Dong ◽  
Ishani D. Premaratne ◽  
Jaime L. Bernstein ◽  
Arash Samadi ◽  
Alexandra J. Lin ◽  
...  

Objective: A major obstacle in the clinical translation of engineered auricular scaffolds is the significant contraction and loss of topography that occur during maturation of the soft collagen-chondrocyte matrix into elastic cartilage. We hypothesized that 3-dimensional-printed, biocompatible scaffolds would “protect” maturing hydrogel constructs from contraction and loss of topography. Design: External disc-shaped and “ridged” scaffolds were designed and 3D-printed using polylactic acid (PLA). Acellular type I collagen constructs were cultured in vitro for up to 3 months. Collagen constructs seeded with bovine auricular chondrocytes (BAuCs) were prepared in 3 groups and implanted subcutaneously in vivo for 3 months: preformed discs with (“Scaffolded/S”) or without (“Naked/N”) an external scaffold and discs that were formed within an external scaffold via injection molding (“Injection Molded/SInj”). Results: The presence of an external scaffold or use of injection molding methodology did not affect the acellular construct volume or base area loss. In vivo, the presence of an external scaffold significantly improved preservation of volume and base area at 3 months compared to the naked group ( P < 0.05). Construct contraction was mitigated even further in the injection molded group, and topography of the ridged constructs was maintained with greater fidelity ( P < 0.05). Histology verified the development of mature auricular cartilage in the constructs within external scaffolds after 3 months. Conclusion: Custom-designed, 3D-printed, biocompatible external scaffolds significantly mitigate BAuC-seeded construct contraction and maintain complex topography. Further refinement and scaling of this approach in conjunction with construct fabrication utilizing injection molding may aid in the development of full-scale auricular scaffolds.


2020 ◽  
Vol 6 (1) ◽  
pp. 57-69
Author(s):  
Amirhosein Fathi ◽  
Farzad Kermani ◽  
Aliasghar Behnamghader ◽  
Sara Banijamali ◽  
Masoud Mozafari ◽  
...  

AbstractOver the last years, three-dimensional (3D) printing has been successfully applied to produce suitable substitutes for treating bone defects. In this work, 3D printed composite scaffolds of polycaprolactone (PCL) and strontium (Sr)- and cobalt (Co)-doped multi-component melt-derived bioactive glasses (BGs) were prepared for bone tissue engineering strategies. For this purpose, 30% of as-prepared BG particles (size <38 μm) were incorporated into PCL, and then the obtained composite mix was introduced into a 3D printing machine to fabricate layer-by-layer porous structures with the size of 12 × 12 × 2 mm3.The scaffolds were fully characterized through a series of physico-chemical and biological assays. Adding the BGs to PCL led to an improvement in the compressive strength of the fabricated scaffolds and increased their hydrophilicity. Furthermore, the PCL/BG scaffolds showed apatite-forming ability (i.e., bioactivity behavior) after being immersed in simulated body fluid (SBF). The in vitro cellular examinations revealed the cytocompatibility of the scaffolds and confirmed them as suitable substrates for the adhesion and proliferation of MG-63 osteosarcoma cells. In conclusion, 3D printed composite scaffolds made of PCL and Sr- and Co-doped BGs might be potentially-beneficial bone replacements, and the achieved results motivate further research on these materials.


Materials ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 5433
Author(s):  
Seung-Ho Shin ◽  
Jung-Hwa Lim ◽  
You-Jung Kang ◽  
Jee-Hwan Kim ◽  
June-Sung Shim ◽  
...  

The amount of photopolymer material consumed during the three-dimensional (3D) printing of a dental model varies with the volume and internal structure of the modeling data. This study analyzed how the internal structure and the presence of a cross-arch plate influence the accuracy of a 3D printed dental model. The model was designed with a U-shaped arch and the palate removed (Group U) or a cross-arch plate attached to the palate area (Group P), and the internal structure was divided into five types. The trueness and precision were analyzed for accuracy comparisons of the 3D printed models. Two-way ANOVA of the trueness revealed that the accuracy was 135.2 ± 26.3 µm (mean ± SD) in Group U and 85.6 ± 13.1 µm in Group P. Regarding the internal structure, the accuracy was 143.1 ± 46.8 µm in the 1.5 mm-thick shell group, which improved to 111.1 ± 31.9 µm and 106.7 ± 26.3 µm in the roughly filled and fully filled models, respectively. The precision was 70.3 ± 19.1 µm in Group U and 65.0 ± 8.8 µm in Group P. The results of this study suggest that a cross-arch plate is necessary for the accurate production of a model using 3D printing regardless of its internal structure. In Group U, the error during the printing process was higher for the hollowed models.


Author(s):  
Lowell T. Edgar ◽  
Steve A. Maas ◽  
James E. Guilkey ◽  
Jeffrey A. Weiss

Recent developments in tissue engineering have created demand for the ability to create microvascular networks with specific topologies in vitro. During angiogenesis, sprouting endothelial cells apply traction forces and migrate along components of the extracellular matrix (ECM), resulting in neovessel elongation [1]. The fibrillar structure of the ECM serves as the major pathway for mechanotransduction between contact-dependent cells. Using a three-dimensional (3D) organ culture model of microvessel fragments within a type-I collagen gel, we have shown that subjecting the culture to different boundary conditions during angiogenesis can lead to drastically different vascular topologies [2]. Fragments cultured in a rectangular gel that were free to contract grew into a randomly oriented network [3, 4]. When the long-axis of the gel was constrained as to prevent contraction, microvessels and collagen fibers were found aligned along the constrained axis (Fig. 1) [4].


2009 ◽  
Vol 131 (10) ◽  
Author(s):  
Jinjin Ma ◽  
Kristen Goble ◽  
Michael Smietana ◽  
Tatiana Kostrominova ◽  
Lisa Larkin ◽  
...  

The incidence of ligament injury has recently been estimated at 400,000/year. The preferred treatment is reconstruction using an allograft, but outcomes are limited by donor availability, biomechanical incompatibility, and immune rejection. The creation of an engineered ligament in vitro solely from patient bone marrow stromal cells (has the potential to greatly enhance outcomes in knee reconstructions. Our laboratory has developed a scaffoldless method to engineer three-dimensional (3D) ligament and bone constructs from rat bone marrow stem cells in vitro. Coculture of these two engineered constructs results in a 3D bone-ligament-bone (BLB) construct with viable entheses, which was successfully used for medial collateral ligament (MCL) replacement in a rat model. 1 month and 2 month implantations were applied to the engineered BLBs. Implantation of 3D BLBs in a MCL replacement application demonstrated that our in vitro engineered tissues grew and remodeled quickly in vivo to an advanced phenotype and partially restored function of the knee. The explanted 3D BLB ligament region stained positively for type I collagen and elastin and was well vascularized after 1 and 2 months in vivo. Tangent moduli of the ligament portion of the 3D BLB 1 month explants increased by a factor of 2.4 over in vitro controls, to a value equivalent to those observed in 14-day-old neonatal rat MCLs. The 3D BLB 1 month explants also exhibited a functionally graded response that closely matched native MCL inhomogeneity, indicating the constructs functionally adapted in vivo.


2004 ◽  
Vol 167 (4) ◽  
pp. 757-767 ◽  
Author(s):  
Tae-Hwa Chun ◽  
Farideh Sabeh ◽  
Ichiro Ota ◽  
Hedwig Murphy ◽  
Kevin T. McDonagh ◽  
...  

During angiogenesis, endothelial cells initiate a tissue-invasive program within an interstitial matrix comprised largely of type I collagen. Extracellular matrix–degradative enzymes, including the matrix metalloproteinases (MMPs) MMP-2 and MMP-9, are thought to play key roles in angiogenesis by binding to docking sites on the cell surface after activation by plasmin- and/or membrane-type (MT) 1-MMP–dependent processes. To identify proteinases critical to neovessel formation, an ex vivo model of angiogenesis has been established wherein tissue explants from gene-targeted mice are embedded within a three-dimensional, type I collagen matrix. Unexpectedly, neither MMP-2, MMP-9, their cognate cell-surface receptors (i.e., β3 integrin and CD44), nor plasminogen are essential for collagenolytic activity, endothelial cell invasion, or neovessel formation. Instead, the membrane-anchored MMP, MT1-MMP, confers endothelial cells with the ability to express invasive and tubulogenic activity in a collagen-rich milieu, in vitro or in vivo, where it plays an indispensable role in driving neovessel formation.


2019 ◽  
Vol 29 (06) ◽  
pp. 733-743 ◽  
Author(s):  
Mari Nieves Velasco Forte ◽  
Tarique Hussain ◽  
Arno Roest ◽  
Gorka Gomez ◽  
Monique Jongbloed ◽  
...  

AbstractAdvances in biomedical engineering have led to three-dimensional (3D)-printed models being used for a broad range of different applications. Teaching medical personnel, communicating with patients and relatives, planning complex heart surgery, or designing new techniques for repair of CHD via cardiac catheterisation are now options available using patient-specific 3D-printed models. The management of CHD can be challenging owing to the wide spectrum of morphological conditions and the differences between patients. Direct visualisation and manipulation of the patients’ individual anatomy has opened new horizons in personalised treatment, providing the possibility of performing the whole procedure in vitro beforehand, thus anticipating complications and possible outcomes. In this review, we discuss the workflow to implement 3D printing in clinical practice, the imaging modalities used for anatomical segmentation, the applications of this emerging technique in patients with structural heart disease, and its limitations and future directions.


Nanomaterials ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 626 ◽  
Author(s):  
Adja B. R. Touré ◽  
Elisa Mele ◽  
Jamieson K. Christie

Three-dimensional (3D) printing has been combined with electrospinning to manufacture multi-layered polymer/glass scaffolds that possess multi-scale porosity, are mechanically robust, release bioactive compounds, degrade at a controlled rate and are biocompatible. Fibrous mats of poly (caprolactone) (PCL) and poly (glycerol sebacate) (PGS) have been directly electrospun on one side of 3D-printed grids of PCL-PGS blends containing bioactive glasses (BGs). The excellent adhesion between layers has resulted in composite scaffolds with a Young’s modulus of 240–310 MPa, higher than that of 3D-printed grids (125–280 MPa, without the electrospun layer). The scaffolds degraded in vitro by releasing PGS and BGs, reaching a weight loss of ~14% after 56 days of incubation. Although the hydrolysis of PGS resulted in the acidification of the buffer medium (to a pH of 5.3–5.4), the release of alkaline ions from the BGs balanced that out and brought the pH back to 6.0. Cytotoxicity tests performed on fibroblasts showed that the PCL-PGS-BGs constructs were biocompatible, with cell viability of above 125% at day 2. This study demonstrates the fabrication of systems with engineered properties by the synergy of diverse technologies and materials (organic and inorganic) for potential applications in tendon and ligament tissue engineering.


2020 ◽  
Author(s):  
Shinji Iizuka ◽  
Ronald P. Leon ◽  
Kyle P. Gribbin ◽  
Ying Zhang ◽  
Jose Navarro ◽  
...  

ABSTRACTThe scaffold protein Tks5α is required for invadopodia-mediated cancer invasion both in vitro and in vivo. We have previously also revealed a role for Tks5 in tumor cell growth using three-dimensional (3D) culture model systems and mouse transplantation experiments. Here we use both 3D and high-density fibrillar collagen (HDFC) culture to demonstrate that native type I collagen, but not a form lacking the telopeptides, stimulated Tks5-dependent growth, which was dependent on the DDR collagen receptors. We used microenvironmental microarray (MEMA) technology to determine that laminin, collagen I, fibronectin and tropoelastin also stimulated invadopodia formation. A Tks5α-specific monoclonal antibody revealed its expression both on microtubules and at invadopodia. High- and super-resolution microscopy of cells in and on collagen was then used to place Tks5α at the base of invadopodia, separated from much of the actin and cortactin, but coincident with both matrix metalloprotease and cathepsin proteolytic activity. Inhibition of the Src family kinases, cathepsins or metalloproteases all reduced invadopodia length but each had distinct effects on Tks5α localization. These studies highlight the crosstalk between invadopodia and extracellular matrix components, and reveal the invadopodium to be a spatially complex structure.


Sign in / Sign up

Export Citation Format

Share Document