scholarly journals The Positive Role of Nanometric Molybdenum–Vanadium Carbides in Mitigating Hydrogen Embrittlement in Structural Steels

Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7269
Author(s):  
Luis Borja Peral ◽  
Inés Fernández-Pariente ◽  
Chiara Colombo ◽  
Cristina Rodríguez ◽  
Javier Belzunce

The influence of hydrogen on the fracture toughness and fatigue crack propagation rate of two structural steel grades, with and without vanadium, was evaluated by means of tests performed on thermally precharged samples in a hydrogen reactor at 195 bar and 450 °C for 21 h. The degradation of the mechanical properties was directly correlated with the interaction between hydrogen atoms and the steel microstructure. A LECO DH603 hydrogen analyzer was used to study the activation energies of the different microstructural trapping sites, and also to study the hydrogen eggresion kinetics at room temperature. The electrochemical hydrogen permeation technique was employed to estimate the apparent hydrogen diffusion coefficient. Under the mentioned hydrogen precharging conditions, a very high hydrogen concentration was introduced within the V-added steel (4.3 ppm). The V-added grade had stronger trapping sites and much lower apparent diffusion coefficient. Hydrogen embrittlement susceptibility increased significantly due to the presence of internal hydrogen in the V-free steel in comparison with tests carried out in the uncharged condition. However, the V-added steel grade (+0.31%V) was less sensitive to hydrogen embrittlement. This fact was ascribed to the positive effect of the precipitated nanometric (Mo,V)C to alleviate hydrogen embrittlement. Mixed nanometric (Mo,V)C might be considered to be nondiffusible hydrogen-trapping sites, in view of their strong hydrogen-trapping capability (~35 kJ/mol). Hence, mechanical behavior of the V-added grade in the presence of internal hydrogen was notably improved.

Hydrogen ◽  
2021 ◽  
Vol 2 (4) ◽  
pp. 414-427
Author(s):  
Atif Imdad ◽  
Alfredo Zafra ◽  
Victor Arniella ◽  
Javier Belzunce

It is well known that the presence of hydrogen decreases the mechanical properties of ferritic steels, giving rise to the phenomenon known as hydrogen embrittlement (HE). The sensitivity to HE increases with the strength of the steel due to the increase of its microstructural defects (hydrogen traps), which eventually increase hydrogen solubility and decrease hydrogen diffusivity in the steel. The aim of this work is to study hydrogen diffusivity in a 42CrMo4 steel submitted to different heat treatments—annealing, normalizing and quench and tempering—to obtain different microstructures, with a broad range of hardness levels. Electrochemical hydrogen permeation tests were performed in a modified Devanathan and Stachursky double-cell. The build-up transient methodology allowed the determination of the apparent hydrogen diffusion coefficient, Dapp, and assessment of its evolution during the progressive filling of the microstructural hydrogen traps. Consequently, the lattice hydrogen diffusion coefficient, DL, was determined. Optical and scanning electron microscopy (SEM) were employed to examine the steel microstructures in order to understand their interaction with hydrogen atoms. In general, the results show that the permeation parameters are strongly related to the steel hardness, being less affected by the type of microstructure.


Metals ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 164 ◽  
Author(s):  
Tingzhi Si ◽  
Yunpeng Liu ◽  
Qingan Zhang ◽  
Dongming Liu ◽  
Yongtao Li

A comparative study was conducted to reveal the effect of microstructure on hydrogen permeation in the EA4T and 30CrNiMoV12 railway axle steels. Unlike the EA4T with its sorbite structure, 30CrNiMoV12 steel shows a typical tempered martensitic structure, in which a large number of fine, short, rod-like, and spherical carbides are uniformly dispersed at boundaries and inside laths. More importantly, this structure possesses plentifully strong hydrogen traps, such as nanosized Cr7C3, Mo2C, VC, and V4C3, thus resulting in a high density of trapping sites (N = 1.17 × 1022 cm−3). The hydrogen permeation experiments further demonstrated that, compared to EA4T, the 30CrNiMoV12 steel not only delivered minimally effective hydrogen diffusivity but also had a high hydrogen concentration. The activation energy for hydrogen diffusion of the 30CrNiMoV12 steel was greatly increased from 23.27 ± 1.94 of EA4T to 47.82 ± 2.14 kJ mol−1.


2020 ◽  
Vol 7 ◽  
Author(s):  
Zhen Wang ◽  
Jing Liu ◽  
Feng Huang ◽  
Yun-jie Bi ◽  
Shi-qi Zhang

The hydrogen diffusion behavior and hydrogen embrittlement susceptibility of dual phase (DP) steels with different martensite content were investigated using the slow strain-rate tensile test and hydrogen permeation measurement. Results showed that a logarithmic relationship was established between the hydrogen embrittlement index (IHE) and the effective hydrogen diffusion coefficient (Deff). When the martensite content is low, ferrite/martensite interface behaves as the main trap that captures the hydrogen atoms. Also, when the Deff decreases, IHE increases with increasing martensite content. However, when the martensite content reaches approximately 68.3%, the martensite grains start to form a continuous network, Deff reaches a plateau and IHE continues to increase. This is mainly related to the reduction of carbon content in martensite and the length of ferrite/martensite interface, which promotes the diffusion of hydrogen atoms in martensite and the aggregation of hydrogen atoms at the ferrite/martensite interface. Finally, a model describing the mechanism of microstructure-driven hydrogen diffusion with different martensite distribution was established.


Membranes ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 120
Author(s):  
Asuka Suzuki ◽  
Hiroshi Yukawa

The hydrogen permeation coefficient (ϕ) is generally used as a measure to show hydrogen permeation ability through dense metallic membranes, which is the product of the Fick’s diffusion coefficient (D) and the Sieverts’ solubility constant (K). However, the hydrogen permeability of metal membranes cannot be analyzed consistently with this conventional description. In this paper, various methods for consistent analysis of hydrogen permeability are reviewed. The derivations of the descriptions are explained in detail and four applications of the consistent descriptions of hydrogen permeability are introduced: (1) prediction of hydrogen flux under given conditions, (2) comparability of hydrogen permeability, (3) understanding of the anomalous temperature dependence of hydrogen permeability of Pd-Ag alloy membrane, and (4) design of alloy composition of non-Pd-based alloy membranes to satisfy both high hydrogen permeability together with strong resistance to hydrogen embrittlement.


2021 ◽  
Vol 1016 ◽  
pp. 1344-1349
Author(s):  
Ali Smith

Modern advanced high strength steels (AHSS) for the automotive sector often contain retained austenite which promotes remarkable combinations of strength and ductility. These high strength steels may however be subject to a risk of hydrogen embrittlement. For the current contribution, hydrogen trapping and embrittlement behaviour were investigated in AHSS compositions having different levels of retained austenite. Hydrogen permeation tests revealed that hydrogen diffusion was slower for increased levels of retained austenite, being controlled most likely by reversible trapping at austenite-matrix interfaces. External hydrogen embrittlement tests via step loading also revealed that resistance to hydrogen was lower for increased levels of retained austenite. It was suggested that during step loading the hydrogen accumulated at austenite-matrix interfaces, leading to cracking when the applied stress was high enough.


2012 ◽  
Vol 2012 ◽  
pp. 1-14 ◽  
Author(s):  
Patricia Castaño-Rivera ◽  
Viviana P. Ramunni ◽  
Pablo Bruzzoni

A numerical finite difference method is developed here to solve the diffusion equation for hydrogen in presence of trapping sites. A feature of our software is that an optimization of diffusion and trapping parameters is achieved via a non linear least squares fit. On the other hand, we have demonstrated that usual electrochemical hydrogen permeation tests are enough to assess hydrogen free energies of trapping in the range of −35 kJ/mol to −70 kJ/mol. These conclusions are obtained by assuming the presence of saturable traps in local equilibrium with hydrogen and are validated by means of simulated permeation and degassing transients. In addition, we check our model performing electrochemical hydrogen permeation tests at 30°C, 50°C, and 70°C, on an API 5L X60 as received steel state to study its trapping and diffusion properties considering only one type of trapping site. The binding energies (ΔG) and the trap densities (N) are determined by fitting the theoretical model to the experimental permeation data. The steel presents a high density of weak traps, |ΔG|<35 KJ/mol, namely, N=1.4×10−5 mol cm−3. Strong trapping sites which alter the shape of the permeation transient are also detected; their ΔG values ranged from 57 to 72 KJ/mol.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Xiang Qiu ◽  
Kun Zhang ◽  
Qin Kang ◽  
Yicheng Fan ◽  
Hongyu San ◽  
...  

Purpose This paper aims to study the mechanism of hydrogen embrittlement in 12Cr2Mo1R(H) steel, which will help to provide valuable information for the subsequent hydrogen embrittlement research of this kind of steel, so as to optimize the processing technology and take more appropriate measures to prevent hydrogen damage. Design/methodology/approach The hydrogen diffusion coefficient of 12Cr2Mo1R(H) steel was measured by the hydrogen permeation technique of double electrolytic cells. Moreover, the influence of hydrogen traps in the material and experimental temperature on hydrogen diffusion behavior was discussed. The first-principles calculations based on density functional theory were used to study the occupancy of H atoms in the bcc-Fe cell, the diffusion path and the interaction with vacancy defects. Findings The results revealed that the logarithm of the hydrogen diffusion coefficient of the material has a linear relationship with the reciprocal of temperature and the activation energy of hydrogen atom diffusion in 12Cr2Mo1R(H) steel is 23.47 kJ/mol. H atoms stably exist in the nearly octahedral interstices in the crystal cell with vacancies. In addition, the solution of Cr/Mo alloy atom does not change the lowest energy path of H atom, but increases the diffusion activation energy of hydrogen atom, thus hindering the diffusion of hydrogen atom. Cr/Mo and vacancy have a synergistic effect on inhibiting the diffusion of H atoms in α-Fe. Originality/value This article combines experiments with first-principles calculations to explore the diffusion behavior of hydrogen in 12Cr2Mo1R(H) steel from the macroscopic and microscopic perspectives, which will help to establish a calculation model with complex defects in the future.


Materials ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 3712
Author(s):  
Bangshu Yang ◽  
Li Li ◽  
Lin Cheng

Hydrogen permeation techniques have been widely utilized to extract hydrogen effective diffusivity, as well as hydrogen trapping site characteristics in steels. Several methods have been proposed to examine reversible and irreversible trapping site characteristics. However, the inappropriate utilization of these simplified models, as well as incorrect value assignment to the key parameters, can result in several orders of magnitude difference in hydrogen trapping site density. Therefore, in order to evaluate these models and verify their application prerequisites, a serial of hydrogen permeation tests were numerically simulated and examined, separately considering reversible and irreversible hydrogen trapping sites. In the meantime, suggestions were given to conduct hydrogen permeation test more effectively, and evaluate hydrogen trapping site characteristics more precisely.


2009 ◽  
Vol 283-286 ◽  
pp. 225-230 ◽  
Author(s):  
Hiroshi Yukawa ◽  
G.X. Zhang ◽  
N. Watanabe ◽  
Masahiko Morinaga ◽  
T. Nambu ◽  
...  

The hydrogen diffusion coefficients are investigated during the hydrogen permeation through Nb-based hydrogen permeable membranes at high temperature. It is found that the hydrogen diffusion coefficient for pure niobium under practical conditions is much lower than the reported values measured for dilute hydrogen solid solutions. Surprisingly, the hydrogen diffusion is found to be faster in Pd-Ag alloy with fcc crystal structure than in pure niobium with bcc crystal structure at 773K during the hydrogen permeation. It is also found that the addition of Ru or W into niobium increases the hydrogen diffusion coefficient under the practical conditions.


2005 ◽  
Vol 237-240 ◽  
pp. 340-345 ◽  
Author(s):  
Hans Jürgen Christ ◽  
S. Schroers ◽  
F.H.S. dos Santos

β–titanium alloys are very attractive materials for many applications because they combine low density, high strength and excellent corrosion resistance. The available data indicate a much higher hydrogen diffusion coefficient in β–titanium alloys as compared to α and α + β alloys. In order to predict the range of applicability of β–titanium alloys in environments, which release hydrogen, the hydrogen diffusion coefficient (DH) needs to be known quantitatively. In the framework of this study the value of DH was determinated on samples, which were electrochemically hydrogen charged. Long thin rods were used as samples and charged in such a way that high hydrogen concentrations were obtained in one half of the length of the specimens, while the other half was kept virtually unaffected. After charging, the rods were annealed enabling hydrogen to diffuse. Hydrogen concentration profiles were experimentally determined and evaluated on the basis of the Matano technique, in order to reveal any effect of concentration on DH. The experiments were carried out on β–titanium alloys of the binary Ti–V system. The concentration range of vanadium in the alloys studied was selected in such a way that it represents the compositions commonly found in commercial alloys. The results show that the effect of hydrogen concentration on DH is negligible and that DH increases with the vanadium concentration.


Sign in / Sign up

Export Citation Format

Share Document