scholarly journals Dilatometric Analysis and Kinetics Research of Martensitic Transformation under a Temperature Gradient and Stress

Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7271
Author(s):  
Liheng Liu ◽  
Bin Guo

Based on material constitutive models and the classic Koistinen–Marburger (KM) kinetics model, a new dilatometric analysis model was developed to extract the kinetics curve of martensitic transformation under a temperature gradient and stress from the measured dilatometric data and to determine the transformation parameters. The proposed dilatometric analysis model is generally for athermal martensitic transformation, relying only on the average atom volume of martensite and austenite. Furthermore, through theoretical calculations, the proposed model also provided a more accurate method for obtaining the martensite start temperature, which is different from the traditional method. According to the dilatometric analysis results for the martensitic transformation of a type of high-strength low-alloy steel, and the thermodynamic basis of martensitic transformation, a refined kinetics model was developed that successfully predicted the martensitic transformation kinetics curves under different stresses, taking into account the physical significance of the transformation parameter α and the driving force of stress for martensitic transformation.

Author(s):  
R-R. Lee

Partially-stabilized ZrO2 (PSZ) ceramics have considerable potential for advanced structural applications because of their high strength and toughness. These properties derive from small tetragonal ZrO2 (t-ZrO2) precipitates in a cubic (c) ZrO2 matrix, which transform martensitically to monoclinic (m) symmetry under applied stresses. The kinetics of the martensitic transformation is believed to be nucleation controlled and the nucleation is always stress induced. In situ observation of the martensitic transformation using transmission electron microscopy provides considerable information about the nucleation and growth aspects of the transformation.


2014 ◽  
Vol 51 (2) ◽  
pp. 41-54 ◽  
Author(s):  
G. Springis ◽  
J. Rudzitis ◽  
A. Avisane ◽  
A. Leitans

Abstract One of the principal objectives of modern production process is the improvement of quality level; this means also guaranteeing the required service life of different products and increase in their wear resistance. To perform this task, prediction of service life of fitted components is of crucial value, since with the development of production technologies and measuring devices it is possible to determine with ever increasing precision the data to be used also in analytical calculations. Having studied the prediction theories of wear process that have been developed in the course of time and can be classified into definite groups one can state that each of them has shortcomings that might strongly impair the results thus making unnecessary theoretical calculations. The proposed model for wear calculation is based on the application of theories from several branches of science to the description of 3D surface micro-topography, assessing the material’s physical and mechanical characteristics, substantiating the regularities in creation of the material particles separated during the wear process and taking into consideration definite service conditions of fittings.


Author(s):  
Xiaodong Li ◽  
Ying Chang ◽  
Cunyu Wang ◽  
Shuo Han ◽  
Daxin Ren ◽  
...  

With the development of the automotive industry, the application of the high-strength steel (HSS) becomes an effective way to improve the lightweight and safety. In this paper, the third-generation automotive medium-Mn steel (TAMM steel) is studied. The warm-stamped TAMM steel holds the complete and fine-grained martensitic microstructure without decarbonization layer, which contributes to high and well-balanced mechanical properties. Furthermore, the martensitic transformation mechanism of the TAMM steel is investigated by the dilatation tests. The results indicate that the effects of the loading method on the Ms temperature under different loads are different. The Ms temperature is hardly influenced under the tensile loads and low compressive load. However, it is slightly decreased under the high compressive load. Moreover, the effects of the strain and strain rate on the Ms temperature are insignificant and can be neglected. As a result, this research proves that the martensitic transformation of the TAMM steel is rarely influenced by the process parameters, such as stamping temperature, loading method, load, strain, and strain rate. The actual stamping process can be designed and controlled accurately referring to the continuous cooling transformation (CCT) curves to realize the required properties and improve the formability of the automotive part.


2015 ◽  
Vol 81-82 ◽  
pp. 107-173 ◽  
Author(s):  
Yuri I. Chumlyakov ◽  
Irina V. Kireeva ◽  
Elena Y. Panchenko ◽  
Ekaterina E. Timofeeva ◽  
Irina V. Kretinina ◽  
...  

2017 ◽  
Vol 263 ◽  
pp. 59-66
Author(s):  
Peng Zhou ◽  
Qing Xian Ma

A new model to predict the structure evolution of 30Cr2Ni4MoV steel is proposed based on the dislocation density in this research. Hot compression of 30Cr2Ni4MoV steel is carried out on Gleeble 1500 at different temperatures from 1233 K to 1473 K with a strain rate of 0.01 s-1 and the deformed samples are immediately quenched by water to frozen the austenite structure. The recrystallization kinetics model of 30Cr2Ni4MoV steel is successfully established by inverse analysis of the flow curve based on the relation between flow stress and dislocation density. In order to validate the proposed model, comparison between the predicted values and experimental values obtained by metallographic analysis is implemented. It is shown that the predicted results agree with the experimental results well.


2021 ◽  
Vol 336 ◽  
pp. 05008
Author(s):  
Cheng Wang ◽  
Sirui Huang ◽  
Ya Zhou

The accurate exploration of the sentiment information in comments for Massive Open Online Courses (MOOC) courses plays an important role in improving its curricular quality and promoting MOOC platform’s sustainable development. At present, most of the sentiment analyses of comments for MOOC courses are actually studies in the extensive sense, while relatively less attention is paid to such intensive issues as the polysemous word and the familiar word with an upgraded significance, which results in a low accuracy rate of the sentiment analysis model that is used to identify the genuine sentiment tendency of course comments. For this reason, this paper proposed an ALBERT-BiLSTM model for sentiment analysis of comments for MOOC courses. Firstly, ALBERT was used to dynamically generate word vectors. Secondly, the contextual feature vectors were obtained through BiLSTM pre-sequence and post-sequence, and the attention mechanism that could calculate the weight of different words in a sentence was applied together. Finally, the BiLSTM output vectors were input into Softmax for the classification of sentiments and prediction of the sentimental tendency. The experiment was performed based on the genuine data set of comments for MOOC courses. It was proved in the result that the proposed model was higher in accuracy rate than the already existing models.


2018 ◽  
Vol 15 (3) ◽  
pp. 286-302 ◽  
Author(s):  
Lucas Bonacina Roldan ◽  
Peter Bent Hansen ◽  
Domingo Garcia-Perez-de-Lema

PurposeInnovation is today considered a competitive differential for improving the performance of companies, and technology parks are seen as environments with favorable conditions for such innovation. The purpose of this study is to develop a framework for analyzing favorable conditions for innovation in technology parks, the innovations produced and organizational performance.Design/methodology/approachTo this end, the authors conducted bibliographic research and in-depth interviews with managers of companies based at the Tecnopuc Science and Technology Park, and managers of the park itself, to establish practical support for previous theoretical findings.FindingsAs a result, a framework was developed to link the favorable conditions for innovation, and organizational performance.Research limitations/implicationsThe analysis model proposed here synthesizes the contributions made by several scholars on the theme, allowing for a more detailed and integrated interpretation of the phenomenon, namely, the ways through which the effective development of innovation takes place in companies residing in technology parks and the contribution of innovation to the specific performance of companies.Practical implicationsThe use of the proposed framework can help direct park managers’ action towards those relationships or activities that prove to be ineffective in achieving desired goals.Originality/valueThe use of the proposed model in empirical surveys will allow for better understanding of the phenomenon involving the features of technology parks and their effects on innovation and the performance of companies installed there, considering that such parks allow them to access resources with lower transaction costs.


2020 ◽  
Author(s):  
Shun Wang ◽  
Wei Wu

AbstractHypoplastic constitutive models are able to describe history dependence using a single nonlinear tensorial function with a set of parameters. A hypoplastic model including a structure tensor for consolidation history was introduced in our previous paper (Wang and Wu in Acta Geotechnica, 2020, 10.1007/s11440-020-01000-z). The present paper focuses mainly on the model validation with experiments. This model is as simple as the modified Cam Clay model but with better performance. The model requires five parameters, which are easy to calibrate from standard laboratory tests. In particular, the model is capable of capturing the unloading behavior without introducing loading criteria. Numerical simulations of element tests and comparison with experiments show that the proposed model is able to reproduce the salient features of normally consolidated and overconsolidated clays.


Energies ◽  
2019 ◽  
Vol 12 (12) ◽  
pp. 2403 ◽  
Author(s):  
Eui Guk Jung ◽  
Joon Hong Boo

Part I of this study introduced a mathematical model capable of predicting the steady-state performance of a loop heat pipe (LHP) with enhanced rationality and accuracy. Additionally, investigation of the effect of design parameters on the LHP thermal performance was also reported in Part I. The objective of Part II is to experimentally verify the utility of the steady-state analytical model proposed in Part I. To this end, an experimental device comprising a flat-evaporator LHP (FLHP) was designed and fabricated. Methanol was used as the working fluid, and stainless steel as the wall and tubing-system material. The capillary structure in the evaporator was made of polypropylene wick of porosity 47%. To provide vapor removal passages, axial grooves with inverted trapezoidal cross-section were machined at the inner wall of the flat evaporator. Both the evaporator and condenser components measure 40 × 50 mm (W × L). The inner diameters of the tubes constituting the liquid- and vapor-transport lines measure 2 mm and 4 mm, respectively, and the lengths of these lines are 0.5 m. The maximum input thermal load was 90 W in the horizontal alignment with a coolant temperature of 10 °C. Validity of the said steady-state analysis model was verified for both the flat and cylindrical evaporator LHP (CLHP) models in the light of experimental results. The observed difference in temperature values between the proposed model and experiment was less than 4% based on the absolute temperature. Correspondingly, a maximum error of 6% was observed with regard to thermal resistance. The proposed model is considered capable of providing more accurate performance prediction of an LHP.


Sign in / Sign up

Export Citation Format

Share Document