scholarly journals Antibacterial Polymers Based on Poly(2-hydroxyethyl methacrylate) and Thiazolium Groups with Hydrolytically Labile Linkages Leading to Inactive and Low Cytotoxic Compounds

Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7477
Author(s):  
Rocío Cuervo-Rodríguez ◽  
Fátima López-Fabal ◽  
Alexandra Muñoz-Bonilla ◽  
Marta Fernández-García

Herein, we develop a well-defined antibacterial polymer based on poly(2-hydroxyethyl methacrylate) (PHEMA) and a derivative of vitamin B1, easily degradable into inactive and biocompatible compounds. Hence, thiazole moiety was attached to HEMA monomer through a carbonate pH-sensitive linkage and the resulting monomer was polymerized via reversible addition-fragmentation chain transfer (RAFT) polymerization. N-alkylation reaction of the thiazole groups leads to cationic polymer with thiazolium groups. This polymer exhibits excellent antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA) with an MIC value of 78 µg mL−1, whereas its degradation product, thiazolium small molecule, was found to be inactive. Hemotoxicity studies confirm the negligible cytotoxicity of the degradation product in comparison with the original antibacterial polymer. The degradation of the polymer at physiological pH was found to be progressive and slow, thus the cationic polymer is expected to maintain its antibacterial characteristics at physiological conditions for a relative long period of time before its degradation. This degradation minimizes antimicrobial pollution in the environment and side effects in the body after eradicating bacterial infection.

2009 ◽  
Vol 62 (11) ◽  
pp. 1501 ◽  
Author(s):  
Ewan Sprong ◽  
Hank De Bruyn ◽  
Christopher H. Such ◽  
Brian S. Hawkett

Recent advances in the use of reversible addition–fragmentation chain transfer (RAFT) polymerization in dispersed phase systems have paved the way for the fine control of the morphology of latex particles that was not possible by conventional free radical polymerization techniques. With this approach, living amphiphilic block copolymers are synthesized that self-assemble to form micelles. The hydrophilic segment is formed from a water-soluble monomer which stabilizes the latex particles as polymerization proceeds and the latex particles grow. The hydrophobic ends of the RAFT diblocks ultimately grow into the polymer that forms the body of the particles. This paper presents examples of ways in which these advances can be used to engineer latex particles with unique morphologies that exhibit specific application properties.


2014 ◽  
Vol 576 ◽  
pp. 49-53
Author(s):  
Ren Chang Zeng ◽  
Jiang Cheng ◽  
Shou Ping Xu ◽  
Qin Liu ◽  
Xiu Fang Wen ◽  
...  

A series of poly (hydroxyethyl methacrylate)-g-polycarboxybetaine methacrylate ester (PHEMA-g-PCBMAE) hydrogels were synthesized using reversible addition-fragmentation chain transfer (RAFT) polymerization in the presence of crosslinker. Then differential scanning calorimetry (DSC) was used to characterize PHEMA-g-PCBMAE hydrogels. The compression stresses of these hydrogels were investigated to evaluate the mechanical properties. The mechanical study suggested that PHEMA-g-PCBMAE hydrogels presented improved mechanical strengths comparing with polycarboxybetaine methacrylate ester (PCBMAE) hydrogel. Besides, the antimicrobial properties of PHEMA-g-PCBMAE hydrogels also estimated by usingStaphylococcus aureusas a model bacterial.


2019 ◽  
Vol 484 (4) ◽  
pp. 431-435
Author(s):  
K. E. Chekurov ◽  
A. I. Barabanova ◽  
I. V. Blagodatskikh ◽  
B. V. Lokshin ◽  
A. S. Peregudov ◽  
...  

Amphiphilic diblock-copolymers (DC) of (2,3,4,5,6)-pentafluorostyrene and 2-hydroxyethyl methacrylate were prepared for the first time by two-step reversible addition–fragmentation chain transfer (RAFT) polymerization. The morphology of films of diblock-copolymers that have a composition close to equimolar was studied by transmission electron microscopy. The observed microphase separation and formation of spherical nanodomains is not typical for equimolar diblock-copolymers and seems to result from hydrogen bonding between the hydroxyl and carbonyl groups (OH···OH and C=O···HO) in poly(2-hydroxyethyl methacrylate) blocks. Obviously, it is the ability of diblock-copolymers to self-organization is the cause of formation of fabric coatings with low surface energy (γ = 11.9 mJ/m2) and relatively large water contact angles (θН2О = 120±6°) and diiodmetane (θCH2I2 = 93±2°).


2021 ◽  
Author(s):  
Siva Ponnupandian ◽  
Prantik Mondal ◽  
Thomas Becker ◽  
Richard Hoogenboom ◽  
Andrew B Lowe ◽  
...  

This investigation reports the preparation of a tailor-made copolymer of furfuryl methacrylate (FMA) and trifluoroethyl methacrylate (TFEMA) via reversible addition-fragmentation chain transfer (RAFT) polymerization. The furfuryl groups of the copolymer...


Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1164
Author(s):  
Angeliki Chroni ◽  
Thomas Mavromoustakos ◽  
Stergios Pispas

The focus of this study is the development of highly stable losartan potassium (LSR) polymeric nanocarriers. Two novel amphiphilic poly(n-butyl acrylate)-block-poly(oligo(ethylene glycol) methyl ether acrylate) (PnBA-b-POEGA) copolymers with different molecular weight (Mw) of PnBA are synthesized via reversible addition fragmentation chain transfer (RAFT) polymerization, followed by the encapsulation of LSR into both PnBA-b-POEGA micelles. Based on dynamic light scattering (DLS), the PnBA30-b-POEGA70 and PnBA27-b-POEGA73 (where the subscripts denote wt.% composition of the components) copolymers formed micelles of 10 nm and 24 nm in water. The LSR-loaded PnBA-b-POEGA nanocarriers presented increased size and greater mass nanostructures compared to empty micelles, implying the successful loading of LSR into the inner hydrophobic domains. A thorough NMR (nuclear magnetic resonance) characterization of the LSR-loaded PnBA-b-POEGA nanocarriers was conducted. Strong intermolecular interactions between the biphenyl ring and the butyl chain of LSR with the methylene signals of PnBA were evidenced by 2D-NOESY experiments. The highest hydrophobicity of the PnBA27-b-POEGA73 micelles contributed to an efficient encapsulation of LSR into the micelles exhibiting a greater value of %EE compared to PnBA30-b-POEGA70 + 50% LSR nanocarriers. Ultrasound release profiles of LSR signified that a great amount of the encapsulated LSR is strongly attached to both PnBA30-b-POEGA70 and PnBA27-b-POEGA73 micelles.


Coatings ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 348 ◽  
Author(s):  
Baolei Liu ◽  
Mingqian Wang ◽  
Ying Liang ◽  
Zhicheng Zhang ◽  
Guohong Ren ◽  
...  

This work launches the first-ever report on the fabrication of waterborne epoxy-graphene oxide (GO) coatings (WEGC) using a block polymer as a dispersant of GO, wherein the block polymer was synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization of acrylic acid and oligo(ethylene glycol) methyl ether methacrylate A number of analytical techniques, such as Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), X-ray diffraction (XRD), thermo gravimetric analysis (TGA), and salt spray tests, were utilized to explore the morphology and performance of the WEGC. It was confirmed that POEGMA950-b-PAA attached to the GO nanosheets, increasing the integral space of the sheets. Modified GO (MGO) layers were well-dispersed in the epoxy matrix through the formation of a GO-dispersant-epoxy ternary molecular structure. Furthermore, the presence of MGO substantially influenced the thermal properties, mechanical properties, and anticorrosion performance of the WEGC. TGA, salt spray tests, and pull-off testsshowed that 0.5 wt.% MGO content achieved the greatest improvement in the evaluated properties.


2011 ◽  
Vol 89 (3) ◽  
pp. 317-325 ◽  
Author(s):  
Binxin Li ◽  
Daniel Majonis ◽  
Peng Liu ◽  
Mitchell A. Winnik

We describe the synthesis of an end-functionalized copolymer of N-(2-hydroxypropyl)methacrylamide (HPMA) and N-hydroxysuccinimide methacrylate (NMS) by reversible addition–fragmentation chain transfer (RAFT) polymerization. To control the polymer composition, the faster reacting monomer (NMS) was added slowly to the reaction mixture beginning 30 min after initating the polymerization (ca. 16% HPMA conversion). One RAFT agent, based on azocyanopentanoic acid, introduced a –COOH group to the chain at one end. Use of a different RAFT agent containing a 4-amino-1,8-naphthalimide dye introduced a UV–vis absorbing and fluorescent group at this chain end. The polymers obtained had molecular weights of 30 000 and 20 000, respectively, and contained about 30 mol% NMS active ester groups.


1999 ◽  
Vol 32 (21) ◽  
pp. 6977-6980 ◽  
Author(s):  
Roshan T. A. Mayadunne ◽  
Ezio Rizzardo ◽  
John Chiefari ◽  
Yen Kwong Chong ◽  
Graeme Moad ◽  
...  

2021 ◽  
Author(s):  
Xiaobing Shi ◽  
Jin Zhang ◽  
Nathaniel Alan Corrigan ◽  
Cyrille Boyer

Reversible addition-fragmentation chain-transfer (RAFT) polymerization has been widely exploited to produce homogeneous and living polymer networks for advanced material design. In this work, we incorporate silica nanoparticles (SNPs) into a...


Sign in / Sign up

Export Citation Format

Share Document