scholarly journals Surface Topography Prediction Model in Milling of Thin-Walled Parts Considering Machining Deformation

Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7679
Author(s):  
Zhitao Chen ◽  
Caixu Yue ◽  
Xianli Liu ◽  
Steven Y. Liang ◽  
Xudong Wei ◽  
...  

With the continuous improvement of the performance of modern aerospace aircraft, the overall strength and lightweight control of aircraft has become a significant feature of modern aerospace parts. With the wide application of thin-walled parts, the requirements for dimensional accuracy and surface quality of workpieces are increasing. In this paper, a numerical model for predicting surface topography of thin-walled parts after elastic deformation is proposed. In view of the geometric characteristics in the cutting process, the cutting force model of thin-walled parts is established, and the meshing relationship between the tool and the workpiece is studied. In addition, the influence of workpiece deformation is considered based on the beam deformation model. Cutting force is calculated based on deformed cutting thickness, and the next cutting–meshing relationship is predicted. The model combines the radial deflection of the workpiece in the feed direction and the changing meshing relationship of the tool–workpiece to determine the three-dimensional topography of the workpiece. The error range between the experimental and the simulation results of surface roughness is 7.45–13.09%, so the simulation three-dimensional morphology has good similarity. The surface topography prediction model provides a fast solution for surface quality control in the thin-walled parts’ milling process.

2014 ◽  
Vol 490-491 ◽  
pp. 600-606
Author(s):  
Jie Qiong Lin ◽  
Jin Guo Han ◽  
Dan Jing ◽  
Xian Jing

Elliptical vibration cutting (EVC) process and three dimensional cutting surfaces are analyzed in this paper to understand the formation of surface topography. The model of EVC surface topography is established based on curved surface remove function under the assumption that the tool edge is sharp enough. And simulation analysis of surface topography is conducted with different feed offset ratios. Results indicate that RMS change with feed offset ratios λ. The range of RMS is larger when feed offset ratio ranges from both 0 to 0.4 and 0.6 to 1, while the range is smaller when feed offset ratio changes from 0.4 to 0.6. Whats more, RMS reaches the minimum when feed offset ratio is 0.5. The present research provides some references for reducing the height of vibration ripples and improving EVC surface quality.


2021 ◽  
Vol 27 (11) ◽  
pp. 1-12
Author(s):  
Giovanni Gómez-Gras ◽  
Marco A. Pérez ◽  
Jorge Fábregas-Moreno ◽  
Guillermo Reyes-Pozo

Purpose This paper aims to investigate the quality of printed surfaces and manufacturing tolerances by comparing the cylindrical cavities machined in parts obtained by fused deposition modeling (FDM) with the holes manufactured during the printing process itself. The comparison focuses on the results of roughness and tolerances, intending to obtain practical references when making assemblies. Design/methodology/approach The experimental approach focuses on the comparison of the results of roughness and tolerances of two manufacturing strategies: geometric volumes with a through-hole and the through-hole machined in volumes that were initially printed without the hole. Throughout the study, both alternates are explained to make appropriate recommendations. Findings The study shows the best combinations of technological parameters, both machining and three-dimensional printing, which have been decisive for obtaining successful results. These conclusive results allow enunciating recommendations for use in the industrial environment. Originality/value This paper fulfills an identified need to study the dimensional accuracy of the geometries obtained by additive manufacturing, as no experimental evidence has been found of studies that directly address the problem of the FDM-printed part with geometric and dimensional tolerances and desirable surface quality for assembly.


Author(s):  
Minghui Cheng ◽  
Li Jiao ◽  
Xuechun Shi ◽  
Xibin Wang ◽  
Pei Yan ◽  
...  

In the process of high strength steel turning, tool wear will reduce the surface quality of the workpiece and increase cutting force and cutting temperature. To obtain the fine surface quality and avoid unnecessary loss, it is necessary to monitor the state of tool wear in the dry turning. In this article, the cutting force, vibration signal and surface texture of the machined surface were collected by tool condition monitoring system and signal processing techniques are being used for extracting the time-domain, frequency-domain and time-frequency features of cutting force and vibration. The gray level processing technique is used to extract the features of the gray co-occurrence matrix of the surface texture and found that these features changed simultaneously when the cutting tool broke. After this, an intelligent prediction model of tool wear was built using the support vector regression (SVR) whose kernel function parameters were optimized by the grid search algorithm (GS), the genetic algorithm (GA) and the particle swarm optimization algorithm respectively. The features extracted from the signals and surface texture are used to train the prediction model in MATLAB. It was found that after the surface texture features were fused using the intelligent prediction model on the basis of the features of cutting force and vibration, prediction accuracy of the proposed method is found as 97.32% and 96.72% respectively under the two prediction models of GA-SVR and GS-SVR. Moreover, the intelligent prediction model can not only predict the tool wear under different cutting conditions, but also the different wear stages in a single wear cycle and the absolute error between the predicted value and the actual value is less than 10 μm, the confidence coefficient of prediction curve is around 0.99.


Author(s):  
Gongyu Liu ◽  
Jiaqiang Dang ◽  
Weiwei Ming ◽  
Qinglong An ◽  
Ming Chen ◽  
...  

The milling of thin-walled workpieces is a common process in many industries. However, the machining defects are easy to occur due to the vibration and/or deformation induced by the poor stiffness of the thin structures, particularly when side milling the edges of plates. To this problem, an attempt by inclining the tool to a proper tilt angle in milling the edges of plates was proposed in this paper, in order to decrease the cutting force component along the direction of the lowest stiffness of the plates, and therefore to mitigate the machining vibration and improve the machined surface quality effectively. First, the milling force model in consideration of the undeformed chip thickness and the tool-workpiece engagement (TWE) was introduced in detail. Then, a new analytical assessment model based on the precisely established cutting force model was developed so as to obtain the optimum tool tilt angle for the minimum force-induced defects after the operation. Finally, the reliability and correctness of the theoretical force model and the proposed assessment model were validated by experiments. The methodology in this paper could provide practical guidance for achieving high-quality machined surface in the milling operation of thin-walled workpieces.


2013 ◽  
Vol 589-590 ◽  
pp. 106-110 ◽  
Author(s):  
Yu Nan Liu ◽  
Shu Tao Huang ◽  
Li Zhou ◽  
Li Fu Xu

In milling process, cutting force is the main cause of machining deformation, and in machining of thin-walled parts, machining deformation is the major factor for machining error. In this paper, through finite element analysis software ABAQUS, three-dimensional simulation analysis on the machining of SiCp/Al composite thin-walled parts with a polycrystalline diamond tool have been carried out. It reveals the influence of radial depth of cut, cutting speed, and feed per tooth on cutting force. Analysis results show that: higher speed, small radial depth of cut and moderate feed per tooth can effectively reduce cutting force and inhibit deformation. In addition, a comparison is made between analysis results of milling force and high accuracy milling force prediction model, results from the two methods are similar.


2015 ◽  
Vol 667 ◽  
pp. 22-28 ◽  
Author(s):  
Jing Li ◽  
Zhan Li Wang ◽  
Ping Xi ◽  
Yang Jiao

Aiming at the problem that the machining accuracy of 45 steel rectangular thin-walled parts are difficult to ensure because of poor rigidity, poor manufacturability and easy machining deformation, it used the three-dimensional finite element method, determined the material model of 45 steel and established a prediction model of 45 steel rectangular thin-walled parts milling deformation. The prediction results display that the deformation of the workpiece shows obvious parabola in length direction and a linear decreasing trend in width direction. It verifies the correctness of the prediction model through milling experiments and provides the method and basis for the prediction and control of machining deformation of 45 steel thin-walled parts.


2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Zhaozhao Lei ◽  
Xiaojun Lin ◽  
Gang Wu ◽  
Luzhou Sun

In order to improve the machining quality and efficiency and optimize NC machining programming, based on the existing cutting force models for ball-end, a cutting force prediction model of free-form surface for ball-end was established. By analyzing the force of the system during the cutting process, we obtained the expression equation of the instantaneous undeformed chip thickness during the milling process and then determined the rule of the influence of the lead angle and the tilt angle on the instantaneous undeformed chip thickness. It was judged whether the cutter edge microelement is involved in cutting, and the algorithm flow chart is given. After that, the cutting force prediction model of free-form surface for ball-end and pseudocodes for cutting force prediction were given. MATLAB was used to simulate the prediction force model. Finally, through the comparative analysis experiment of the measured cutting force and the simulated cutting force, the experimental results are basically consistent with the theoretical prediction results, which proves that the model established in this paper can accurately predict the change of the cutting force of the ball-end cutter in the process of milling free-form surface, and the error of the cutting force prediction model established in this paper is reduced by 15% compared with the traditional cutting force prediction model.


Sign in / Sign up

Export Citation Format

Share Document