scholarly journals Mechanical Behaviour of Aluminium-Timber Composite Connections with Screws and Toothed Plates

Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 68
Author(s):  
Marcin Chybiński ◽  
Łukasz Polus

This paper presents an investigation of the load-slip behaviour of aluminium-timber composite connections. Toothed plates with bolts are often used for connecting timber structural members with steel structural members. In this paper, toothed plates (C2-50/M10G, C2-50/M12G or C11-50/M12) have been used as reinforcement in aluminium-timber screwed connections for the first time. The push-out test specimens consisted of laminated veneer lumber slabs, aluminium alloy beams, and hexagon head wood screws (10 mm × 80 mm and 12 mm × 80 mm). Of the specimens, 12 additionally had toothed plates as reinforcement, while 8 had no reinforcement. The load carrying-capacity, the mode of failure and the load-slip response of the strengthened and non-strengthened screwed connections were investigated. The use of toothed plate connectors was found to be effective in increasing the strength of aluminium-timber composite connections and ineffective in improving their stiffness. The examined stiffness and strength of the connections can be used in the design and numerical modelling of aluminium-timber composite beams with reinforced screwed connections.

Author(s):  
Ryoga Oura ◽  
Takashi Yamaguchi ◽  
Kentaro Arimura

<p>Bridges are composed by many structural members which interact with each other to resist against various load combinations. Considering damage repair of one of its structural members, the relationship between the recovery of the individual load-carrying capacity due to the repair of a single member and the improvement of the load-carrying capacity of the structural system is not clear. In the present study, a full-scale FE analysis has been conducted for a steel I-girder bridge system with corrosion damages which have been repaired. The analysis considered, the structural system behavior, varying the repaired areas and the type of patch members. From the analytical results, it was found that, compared to the method in which the damaged portion is completely repaired, the amount of repair can be reduced by taking into account the structural system behavior and partially repair both the damaged and the adjacent intact girders.</p>


2019 ◽  
Vol 9 (17) ◽  
pp. 3637
Author(s):  
Haitao Chen ◽  
Lai Wang ◽  
Jitao Zhong

The optimal strut-and-tie models (STMs) of two typical irregular concrete deep beams were constructed using evolutionary structural optimization and compared with those of previous studies. The reinforced concrete deep beam specimens were cast according to the reinforcement designs guided by different STMs. Eight irregular concrete deep beam specimens were experimentally investigated under stepped loading, and the differences in the amount of steel used, the load-carrying capacity, and the failure pattern of the different specimens were analyzed. The results show that the optimal STMs proposed in this study have significant advantages in terms of cost-effectiveness and can simultaneously ensure the load-carrying capacity, delay the crack propagation of irregular concrete deep beams, and reduce the amount of steel used in structural members. Therefore, they have an important engineering application value for the reinforcement design of irregular concrete deep beams.


Author(s):  
Vishnu Vardan.A ◽  
Kaarthik. M

There are two structural members used in steel construction the hot rolled members and the cold formed members. They are light members compared to the traditional heavier hot rolled steel structural members used in the field. They have high strength to weight ratio resulting in less dead weight making it a good option in construction of bridges roof trusses transmission line towers multi storied buildings and other structural members. This paper is done to understand the flexural capacity and to enhance it by developing innovative latticed cold formed steel beam. The impact of web opening of the cold formed beam on the flexural behavior of cold formed built-up I section under two point loading is investigated for the simply supported end conditions. Numerical analysis is performed using finite element analysis (FEM) software. From results, the load vs. Deflection curve, failure modes and ultimate load carrying capacity of the specimen presented in this paper. Therefore the main focus of this project is to investigate the flexural behavior of these steel members and by replacing the lattice hot rolled section by cold formed steel sections. The ultimate load carrying capacity with failure mode of simulated FEA models was compared with experimental results.


2020 ◽  
Vol 11 (1) ◽  
pp. 105
Author(s):  
In-Rak Choi ◽  
Chang-Soo Kim

To investigate the behavior of various steel anchors, push-out tests were performed for 13 test specimens. Test parameters included the geometry of beams (wide-flange beams and composite beams) and the type of steel anchors (stud anchors and Z- and C-channel anchors with full- or partial-length welding). Test results showed that the performance of test specimens strongly depends on the types of steel anchors rather than the geometry of steel beams. The specimens with C-channel anchors showed the highest load-carrying capacity but the most drastic load reduction after the peak load. The specimens with Z-channel anchors showed a similar behavior to those with C-channel anchors but the load reduction occurred at a slightly slower rate. The load-carrying capacity was increased with the length of the Z- and C-channel anchors. The specimens with stud anchors reached the peak load at a slow rate and showed the most ductile behavior. The test results were compared with predictions by various design equations for steel anchors available in the literature, and the existing design equations for channel anchors with partial-length welding were considered applicable to design.


2018 ◽  
Vol 187 (1) ◽  
pp. 129-139
Author(s):  
Piotr Bilko ◽  
Szymon Sawczynski

This article aims at presenting the basic principles of designing steel structures according to Eurocode PN-EN 1993-1-2, i.e. with respect to ensuring the appropriate level of safety for such structures in case of a fire developing into flashover. The load-carrying capacity of a steel structure, serving as an example, was assessed on the basis of a static strain-stress analysis. The analysis was conducted regarding changes in the temperature of structural members, both the exposed and the fireproof protected ones, under fire conditions.


2005 ◽  
Vol 10 (2) ◽  
pp. 151-160 ◽  
Author(s):  
J. Kala ◽  
Z. Kala

Authors of article analysed influence of variability of yield strength over cross-section of hot rolled steel member to its load-carrying capacity. In calculation models, the yield strength is usually taken as constant. But yield strength of a steel hot-rolled beam is generally a random quantity. Not only the whole beam but also its parts have slightly different material characteristics. According to the results of more accurate measurements, the statistical characteristics of the material taken from various cross-section points (e.g. from a web and a flange) are, however, more or less different. This variation is described by one dimensional random field. The load-carrying capacity of the beam IPE300 under bending moment at its ends with the lateral buckling influence included is analysed, nondimensional slenderness according to EC3 is λ¯ = 0.6. For this relatively low slender beam the influence of the yield strength on the load-carrying capacity is large. Also the influence of all the other imperfections as accurately as possible, the load-carrying capacity was determined by geometrically and materially nonlinear solution of very accurate FEM model by the ANSYS programme.


2005 ◽  
Vol 10 (1) ◽  
pp. 65-75 ◽  
Author(s):  
Z. Kala

The load-carrying capacity of the member with imperfections under axial compression is analysed in the present paper. The study is divided into two parts: (i) in the first one, the input parameters are considered to be random numbers (with distribution of probability functions obtained from experimental results and/or tolerance standard), while (ii) in the other one, the input parameters are considered to be fuzzy numbers (with membership functions). The load-carrying capacity was calculated by geometrical nonlinear solution of a beam by means of the finite element method. In the case (ii), the membership function was determined by applying the fuzzy sets, whereas in the case (i), the distribution probability function of load-carrying capacity was determined. For (i) stochastic solution, the numerical simulation Monte Carlo method was applied, whereas for (ii) fuzzy solution, the method of the so-called α cuts was applied. The design load-carrying capacity was determined according to the EC3 and EN1990 standards. The results of the fuzzy, stochastic and deterministic analyses are compared in the concluding part of the paper.


Sign in / Sign up

Export Citation Format

Share Document