scholarly journals Push-Out Tests on Various Steel Anchors with Partial-Length Welding in Steel–Concrete Composite Members

2020 ◽  
Vol 11 (1) ◽  
pp. 105
Author(s):  
In-Rak Choi ◽  
Chang-Soo Kim

To investigate the behavior of various steel anchors, push-out tests were performed for 13 test specimens. Test parameters included the geometry of beams (wide-flange beams and composite beams) and the type of steel anchors (stud anchors and Z- and C-channel anchors with full- or partial-length welding). Test results showed that the performance of test specimens strongly depends on the types of steel anchors rather than the geometry of steel beams. The specimens with C-channel anchors showed the highest load-carrying capacity but the most drastic load reduction after the peak load. The specimens with Z-channel anchors showed a similar behavior to those with C-channel anchors but the load reduction occurred at a slightly slower rate. The load-carrying capacity was increased with the length of the Z- and C-channel anchors. The specimens with stud anchors reached the peak load at a slow rate and showed the most ductile behavior. The test results were compared with predictions by various design equations for steel anchors available in the literature, and the existing design equations for channel anchors with partial-length welding were considered applicable to design.

2017 ◽  
Vol 79 (5) ◽  
Author(s):  
Nahushananda Chakravarthy ◽  
Sivakumar Naganathan ◽  
Jonathan Tan Hsien Aun ◽  
Sreedhar Kalavagunta ◽  
Kamal Nasharuddin Mustapha ◽  
...  

Cold formed steel differ from hot rolled steel by its lesser thickness and weight. The cold formed steel applicable in roof purlin, pipe racks and wall panels etc. Due its lesser wall thickness the cold formed steel member subjected to buckling. The enhancement of load carrying capacity of the cold formed steel member can be achieved by external strengthening of CFRP. In this study cold formed channel members connected back to back to form I shaped cross section using screws. These built up beam members were 300mm, 400mm and 500mm in length with 100mm screw spacing and edge distance of 50mm were chosen for testing. CFRP fabric cut according to length, width of built up beams and wrapped outer surface of beam using epoxy resin. Experiments were carried out in two sets firstly plain built up beams and secondly CFRP wrapped beams. The test results shows that increased load carrying capacity and reduction in deflection due to CFRP strengthening. Experimental results were compared with AISI standards which are in good agreement. Experimental results shows that CFRP strengthening is economic and reliable.


1987 ◽  
Vol 2 (3) ◽  
pp. 77-80 ◽  
Author(s):  
Marvin R. Pyles ◽  
Joan Stoupa

Abstract In order to quantify the stump anchor capacity of small second-growth Douglas-fir (Pseudotsuga menziesii [Mirb]. Franco) trees, load tests to failure were conducted on 18 stumps from trees 7 to 16.5 in dbh. The tests produced ultimate loads that varied as the square of the tree diameter. However, the ultimate load typically occurred at stump system deformations that were far in excess of that which would be considered failure of a stump anchor. A hyperbolic equation was used to describe the load-deformation behavior of each stump tested and was generalized to describe all the test results. West. J. Appl. For. 2(3):72-80, July 1987.


2019 ◽  
Vol 22 (13) ◽  
pp. 2755-2770
Author(s):  
Fuyun Huang ◽  
Yulong Cui ◽  
Rui Dong ◽  
Jiangang Wei ◽  
Baochun Chen

When casting wet concrete into hollow steel tubular arch during the construction process of a concrete-filled steel tubular arch bridge, an initial stress (due to dead load, etc.) would be produced in the steel tube. In order to understand the influence of this initial stress on the strength of the concrete-filled steel tubular arch bridge, a total of four single tubular arch rib (bare steel first) specimens (concrete-filled steel tubular last) with various initial stress levels were constructed and tested to failure. The test results indicate that the initial stress has a large influence on the ultimate load-carrying capacity and ductility of the arch structure. The high preloading ratio will reduce significantly the strength and ductility that the maximum reductions are over 25%. Then, a finite element method was presented and validated using the test results. Based on this finite element model, a parametric study was performed that considered the influence of various parameters on the ultimate load-carrying capacity of concrete-filled steel tubular arches. These parameters included arch slenderness, rise-to-span ratio, loading method, and initial stress level. The analysis results indicate that the initial stress can reduce the ultimate loading capacity significantly, and this reduction has a strong relationship with arch slenderness and rise-to-span ratio. Finally, a method for calculating the preloading reduction factor of ultimate load-carrying capacity of single concrete-filled steel tubular arch rib structures was proposed based on the equivalent beam–column method.


Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Xuezeng Liu ◽  
Yunlong Sang ◽  
Shuang Ding ◽  
Guiliang You ◽  
Wenxuan Zhu ◽  
...  

Cracks and other diseases may occur in the long-term operation of highway tunnels and reduce the structural load-carrying capacity. Strengthening using carbon fiber reinforced polymer (CFRP) sheets and other materials could extend the service time of the tunnels. However, the process of strengthening tunnels is remarkably different from the process of strengthening aboveground structures because of the secondary load. In order to understand the development of stress and deformation of strengthened tunnels under secondary load, a 1 : 10 scaled model was tested to simulate the tunnel strengthened with CFRP under different damage states. The test results show that CFRP strengthening improved the stiffness of the structure and inhibited the propagation of the existing cracks. The peeling of the CFRP sheets made the strengthened structure quickly lose its load-carrying capacity, causing the instability of the structure. The failure loads of the structures strengthened at different damage states were essentially the same, with an average value of 184% of the original failure load. Nevertheless, the early strengthening helped control the structural deformation. The test results also demonstrate that the bonding strength between the CFRP and the lining is essential for strengthening effectiveness. This study provides a theoretical basis for similar engineering reinforcement designs.


2018 ◽  
Vol 21 (16) ◽  
pp. 2534-2552 ◽  
Author(s):  
Pinelopi Kyvelou ◽  
Chi Hui ◽  
Leroy Gardner ◽  
David A Nethercot

Cold-formed steel purlin systems with overlapped or sleeved connections are alternatives to continuous two-span systems and exhibit different degrees of continuity. Both connection types are highly favourable in practice since they are both strategically placed over an interior support to provide additional moment resistance and rotational capacity where the corresponding demands are at their largest, thus improving the overall structural efficiency. Until recently, full-scale testing has been the most common way of investigating the structural behaviour of such systems. In this study, numerical modelling, capable of capturing the complex contact interactions and instability phenomena, is employed. The developed finite element models are first validated against data from physical tests on cold-formed steel beams featuring sleeved and overlapped connections that have been previously reported in the literature. Following their validation, the models are employed for parametric studies, based on which the structural behaviour of the examined systems is explored, while the applicability of conventional plastic design as well as of a previously proposed design approach is investigated. Finally, the efficiency of these systems in terms of load-carrying capacity is compared with their equivalent continuous two-span systems.


2015 ◽  
Vol 816 ◽  
pp. 461-468 ◽  
Author(s):  
Pavel Lekomtsev ◽  
Pavol Božek ◽  
Alexander Romanov ◽  
Andrey Abramov ◽  
Ivan Abramov ◽  
...  

Test results of axial shift of “technical ceramics - glass” parts in taper interference fit joint under axial loading are presented. The load-carrying capacity was tested under normal conditions; a servo press was used to load the test samples. The tested samples were assembled by thermal method.


2019 ◽  
Vol 279 ◽  
pp. 02004
Author(s):  
Sergey Kudryavtsev

The paper presents a study of the transverse bending behaviour of corrugated web beam with and without web openings. Examined steel beams consist of two flanges and a thin triangularly corrugated web, connected by automatic welding. In the literature, the influence of web opening over transverse load carrying capacity was dealt with mostly for steel beams with plane, sinusoidal and trapezoidal corrugated webs, so researches of beams with triangularly corrugated webs were found out to be very limited. A parametric study is carried out for various web slenderness and corrugation densities. A general-purpose finite element analysis software ABAQUS was used. The corrugation densities adopted in this study represent practical geometries, which are commonly used for such structures in building practice. Models with and without web openings were analysed and examined in terms of load-deformation characteristics and ultimate web shear resistance. Recommendations are given for the practical design of corrugated web beams weakened by circular openings.


2015 ◽  
Vol 744-746 ◽  
pp. 319-322
Author(s):  
Chang Chun Dong ◽  
Wei Zhao

To investigate the effect of stiffener on the stiffness and strength of T-stubs, 3 T-stub connections without stiffeners and 6 stiffened T-stub connections with varied shape and thickness of stiffeners were tested monotonically. The load carrying capacity, relative deformations of endplates and strains on the stiffeners and endplates were measured. The load-deformation curves of the connections and load-strain curves were presented. The test results showed that the commonly used stiffeners in current Chinese practice often yield or/and buckle prematurely. And the stiffener designed by the method can meet the requirement in CECS102-2002, which demands that the stiffener should be able to force the extended portion of endplates from clamped-free boundary to plates fixed on two adjacent boundaries.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Thuy-Anh Nguyen ◽  
Hai-Bang Ly ◽  
Van Quan Tran

Castellated steel beams (CSB) are an attractive option for the steel construction industry thanks to outstanding advantages, such as the ability to exceed large span, lightweight, and allowing flexible arrangement of the technical pipes through beams. In addition, the complex localized and global failures characterizing these structural members have led researchers to focus on the development of efficient design guidelines. This paper aims to propose an artificial neural network (ANN) model with optimal architecture to predict the load-carrying capacity of CSB with a scheme of the simple beam bearing load located at the center of the beam. The ANN model is built with 9 input variables, which are essential parameters equivalent to the geometrical properties and mechanical properties of the material, such as the overall depth of the castellated beam, the vertical projection of the inclined side of the opening, the web thickness, the flange width, the flange thickness, the width of web post at middepth, the horizontal projection of inclined side of the opening, the minimum web yield stress, and the minimum flange yield stress. The output variable is the load-carrying capacity of the CSB. With the optimal ANN architecture [9-1-1] containing one hidden layer, the performance of the ANN model is evaluated based on statistical criteria such as R2, RMSE, and MAE. The results show that the optimal ANN model is a highly effective predictor of the load-carrying capacity of the CSB with the best value of R2 = 0.989, RMSE = 3.328, and MAE = 2.620 for the testing part. The ANN model seems to be the best algorithm of machine learning for predicting the CSB load-carrying capacity.


2021 ◽  
Vol 895 ◽  
pp. 77-87
Author(s):  
Hussamalden Alqahar Ammar ◽  
Ahmad Jabbar Hussain Alshimmeri

The main objectives of this study are to study the enhancement of the load-carrying capacity of Asymmetrical castellated beams with encasement the beams by Reactive Powder Concrete (RPC) and lacing reinforcement, the effect of the gap between top and bottom parts of Asymmetrical castellated steel beam at web post, and serviceability of the confined Asymmetrical castellated steel. This study presents two concentrated loads test results for four specimens Asymmetrical castellated beams section encasement by Reactive powder concrete (RPC) with laced reinforcement. The encasement of the Asymmetrical castellated steel beam consists of, flanges unstiffened element height was filled with RPC for each side and laced reinforced which are used inclined continuous reinforcement of two layers on each side of the Asymmetrical castellated steel beam web. The inclination angle of lacing reinforcement concerning the longitudinal axis is 45. Four specimens with four different configurations will be prepared and tested under two concentrated loads at the mid-third of the beam span. The tested specimen's properties are the First model; unconfined, Asymmetrical castellated steel beam (Reference), while the second, third, and fourth models consist of Asymmetrical Castellated steel beam (web and flange) confined with (RPC) with 19.1, 38.2, and 57.3 mm gap, respectively, between the two beams sections (the upper and lower one). The results of the experimental tests show that the use of RPC enhanced the properties of the castellated beams in all selected conditions despite creating a gap between the castellated beams.


Sign in / Sign up

Export Citation Format

Share Document