scholarly journals A Critical Review of the Design, Manufacture, and Evaluation of Bone Joint Replacements for Bone Repair

Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 153
Author(s):  
Yi Huo ◽  
Yongtao Lyu ◽  
Sergei Bosiakov ◽  
Feng Han

With the change of people’s living habits, bone trauma has become a common clinical disease. A large number of bone joint replacements is performed every year around the world. Bone joint replacement is a major approach for restoring the functionalities of human joints caused by bone traumas or some chronic bone diseases. However, the current bone joint replacement products still cannot meet the increasing demands and there is still room to increase the performance of the current products. The structural design of the implant is crucial because the performance of the implant relies heavily on its geometry and microarchitecture. Bionic design learning from the natural structure is widely used. With the progress of technology, machine learning can be used to optimize the structure of bone implants, which may become the focus of research in the future. In addition, the optimization of the microstructure of bone implants also has an important impact on its performance. The widely used design algorithm for the optimization of bone joint replacements is reviewed in the present study. Regarding the manufacturing of the implant, the emerging additive manufacturing technique provides more room for the design of complex microstructures. The additive manufacturing technique has enabled the production of bone joint replacements with more complex internal structures, which makes the design process more convenient. Numerical modeling plays an important role in the evaluation of the performance of an implant. For example, theoretical and numerical analysis can be carried out by establishing a musculoskeletal model to prepare for the practical use of bone implants. Besides, the in vitro and in vivo testing can provide mechanical properties of bone implants that are more in line with the implant recipient’s situation. In the present study, the progress of the design, manufacture, and evaluation of the orthopedic implant, especially the joint replacement, is critically reviewed.

2020 ◽  
Author(s):  
Miaomiao He ◽  
Ce zhu ◽  
Huan Xu ◽  
dan Sun ◽  
Chen Chen ◽  
...  

The use of polyetheretherketone (PEEK) has grown exponentially in the biomedical field in recent decades due to its outstanding biomechanical properties. However, its lack of bioactivity/osteointegration remains an unresolved issue towards its wide use in orthopedic applications. In this work, graphene nanosheets have been incorporated into PEEK to obtain multifunctional nanocomposites. Due to the formation of electrical percolation network and the π-π* conjugation between graphene and PEEK, the resulting composites have achieved twelve order of magnitude enhancement in its electrical conductivity, and have enabled electrophoretic deposition of bioactive/anti-bacterial coating consisting of stearyltrimethylammonium chloride (STAC) modified hydroxyapatite (HA). The coated composite implant showed significant boosting of BMSC cell proliferation in vitro. In addition, the strong photothermal conversion effect of the graphene nanofillers have enabled laser induced heating of our nanocomposite implants, where the temperature of the implant can reach 45 oC in 150 s. The unique multi-functionality of our composite implant has also been demonstrated for photothermal applications such as enhancing bacterial (E. coli and S. aureus) eradication and tumor cell (MG63) inhibition, as well as bone tissue regeneration in vivo. The results suggest the strong potential of our multi-functional implant in bone repair applications as well as multi-modal therapy of challenging bone diseases such as osteosarcoma and osteomyelitis


2018 ◽  
Vol 5 (3-4) ◽  
pp. 97-109 ◽  

Bone diseases and injuries have a major impact on the quality of life. Classical treatments for bone repair/regeneration/replacement have various disadvantages. Bone tissue engineering (BTE) received a great attention in the last years. Natural polymers are intensively studied in this field due to their properties (biocompatibility, biodegradability, abundance in nature, high processability). Unfortunately, their mechanical properties are poor, which is why synthetic polymers or ceramics are added in order to provide the optimal compressive, elastic or fatigue strength. Moreover, growth factors, vitamins, or antimicrobial substances are also added to enhance the cell behavior (attachment, proliferation, and differentiation). In this review, new scientific results regarding potential applications of chitosan-, alginate-, and gelatin based biocomposites in BTE will be provided, along with their in vitro and/or in vivo tests.


2020 ◽  
Author(s):  
Miaomiao He ◽  
Ce zhu ◽  
Huan Xu ◽  
dan Sun ◽  
Chen Chen ◽  
...  

The use of polyetheretherketone (PEEK) has grown exponentially in the biomedical field in recent decades due to its outstanding biomechanical properties. However, its lack of bioactivity/osteointegration remains an unresolved issue towards its wide use in orthopedic applications. In this work, graphene nanosheets have been incorporated into PEEK to obtain multifunctional nanocomposites. Due to the formation of electrical percolation network and the π-π* conjugation between graphene and PEEK, the resulting composites have achieved twelve order of magnitude enhancement in its electrical conductivity, and have enabled electrophoretic deposition of bioactive/anti-bacterial coating consisting of stearyltrimethylammonium chloride (STAC) modified hydroxyapatite (HA). The coated composite implant showed significant boosting of BMSC cell proliferation in vitro. In addition, the strong photothermal conversion effect of the graphene nanofillers have enabled laser induced heating of our nanocomposite implants, where the temperature of the implant can reach 45 oC in 150 s. The unique multi-functionality of our composite implant has also been demonstrated for photothermal applications such as enhancing bacterial (E. coli and S. aureus) eradication and tumor cell (MG63) inhibition, as well as bone tissue regeneration in vivo. The results suggest the strong potential of our multi-functional implant in bone repair applications as well as multi-modal therapy of challenging bone diseases such as osteosarcoma and osteomyelitis


Author(s):  
Maryam Muhammad Mailafiya ◽  
Mohamad Aris Mohd Moklas ◽  
Kabeer Abubakar ◽  
Abubakar Danmaigoro ◽  
Samaila Musa Chiroma ◽  
...  

Background: Cockle shell-derived calcium carbonate nanoparticles (CSCaCO3NP) are natural biogenic inorganic material that is used in drug delivery mainly as a bone-remodeling agent as well as a delivery agent for various therapeutics against bone diseases. Curcumin possess wide safety margin and yet puzzled with the problem of poor bioavailability due to insolubility. Propounding in vitro and in vivo studies on toxicity assessments of newly synthesized nanoparticles are ongoing to overcome some crucial challenges regarding their safety administration. Nanotoxicology has paved ways for concise test protocols to monitor sequential events with regards to possible toxicity of newly synthesized nanomaterials. The development of nanoparticle with no or less toxic effect has gained tremendous attentions. Objective: This study aimed at evaluating the in vitro cytotoxic effect of curcumin-loaded cockle shell-derived calcium carbonate nanoparticles (Cur-CSCaCO3NP) and assessing its biocompatibility on normal cells using standard techniques of WST’s assay. Method: Standard techniques of WST’s assay was used for the evaluation of the biocompatibility and cytotoxicity. Result: The result showed that CSCaCO3NP and Cur-CSCaCO3NP possess minimal toxicity and high biocompatibility on normal cells even at higher dose of 500 µg/ml and 40 µg/ml respectively. Conclusion: CSCaCO3NP can be termed an excellent non-toxic nanocarrier for curcumin delivery. Hence, curcumin loaded cockle shell derived calcium carbonate nanoparticles (Cur-CSCaCO3NP) could further be assessed for various in vivo and in vitro therapeutic applications against various bone related ailments.


2021 ◽  
Vol 22 (6) ◽  
pp. 2925
Author(s):  
Victor Häussling ◽  
Romina H Aspera-Werz ◽  
Helen Rinderknecht ◽  
Fabian Springer ◽  
Christian Arnscheidt ◽  
...  

A large British study, with almost 3000 patients, identified diabetes as main risk factor for delayed and nonunion fracture healing, the treatment of which causes large costs for the health system. In the past years, much progress has been made to treat common complications in diabetics. However, there is still a lack of advanced strategies to treat diabetic bone diseases. To develop such therapeutic strategies, mechanisms leading to massive bone alterations in diabetics have to be well understood. We herein describe an in vitro model displaying bone metabolism frequently observed in diabetics. The model is based on osteoblastic SaOS-2 cells, which in direct coculture, stimulate THP-1 cells to form osteoclasts. While in conventional 2D cocultures formation of mineralized matrix is decreased under pre-/diabetic conditions, formation of mineralized matrix is increased in 3D cocultures. Furthermore, we demonstrate a matrix stability of the 3D carrier that is decreased under pre-/diabetic conditions, resembling the in vivo situation in type 2 diabetics. In summary, our results show that a 3D environment is required in this in vitro model to mimic alterations in bone metabolism characteristic for pre-/diabetes. The ability to measure both osteoblast and osteoclast function, and their effect on mineralization and stability of the 3D carrier offers the possibility to use this model also for other purposes, e.g., drug screenings.


Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1797
Author(s):  
Manuel Toledano ◽  
Marta Vallecillo-Rivas ◽  
María T. Osorio ◽  
Esther Muñoz-Soto ◽  
Manuel Toledano-Osorio ◽  
...  

Barrier membranes are employed in guided bone regeneration (GBR) to facilitate bone in-growth. A bioactive and biomimetic Zn-doped membrane with the ability to participate in bone healing and regeneration is necessary. The aim of the present study is to state the effect of doping the membranes for GBR with zinc compounds in the improvement of bone regeneration. A literature search was conducted using electronic databases, such as PubMed, MEDLINE, DIMDI, Embase, Scopus and Web of Science. A narrative exploratory review was undertaken, focusing on the antibacterial effects, physicochemical and biological properties of Zn-loaded membranes. Bioactivity, bone formation and cytotoxicity were analyzed. Microstructure and mechanical properties of these membranes were also determined. Zn-doped membranes have inhibited in vivo and in vitro bacterial colonization. Zn-alloy and Zn-doped membranes attained good biocompatibility and were found to be non-toxic to cells. The Zn-doped matrices showed feasible mechanical properties, such as flexibility, strength, complex modulus and tan delta. Zn incorporation in polymeric membranes provided the highest regenerative efficiency for bone healing in experimental animals, potentiating osteogenesis, angiogenesis, biological activity and a balanced remodeling. Zn-loaded membranes doped with SiO2 nanoparticles have performed as bioactive modulators provoking an M2 macrophage increase and are a potential biomaterial for promoting bone repair. Zn-doped membranes have promoted pro-healing phenotypes.


2019 ◽  
Vol 8 (12) ◽  
pp. 2091 ◽  
Author(s):  
Stuart B. Goodman ◽  
Jiri Gallo

Clinical studies, as well as in vitro and in vivo experiments have demonstrated that byproducts from joint replacements induce an inflammatory reaction that can result in periprosthetic osteolysis (PPOL) and aseptic loosening (AL). Particle-stimulated macrophages and other cells release cytokines, chemokines, and other pro-inflammatory substances that perpetuate chronic inflammation, induce osteoclastic bone resorption and suppress bone formation. Differentiation, maturation, activation, and survival of osteoclasts at the bone–implant interface are under the control of the receptor activator of nuclear factor kappa-Β ligand (RANKL)-dependent pathways, and the transcription factors like nuclear factor κB (NF-κB) and activator protein-1 (AP-1). Mechanical factors such as prosthetic micromotion and oscillations in fluid pressures also contribute to PPOL. The treatment for progressive PPOL is only surgical. In order to mitigate ongoing loss of host bone, a number of non-operative approaches have been proposed. However, except for the use of bisphosphonates in selected cases, none are evidence based. To date, the most successful and effective approach to preventing PPOL is usage of wear-resistant bearing couples in combination with advanced implant designs, reducing the load of metallic and polymer particles. These innovations have significantly decreased the revision rate due to AL and PPOL in the last decade.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Hideki Kitaura ◽  
Keisuke Kimura ◽  
Masahiko Ishida ◽  
Haruka Kohara ◽  
Masako Yoshimatsu ◽  
...  

Tumor necrosis factor-α(TNF-α) is a cytokine produced by monocytes, macrophages, and T cells and is induced by pathogens, endotoxins, or related substances. TNF-αmay play a key role in bone metabolism and is important in inflammatory bone diseases such as rheumatoid arthritis. Cells directly involved in osteoclastogenesis include macrophages, which are osteoclast precursor cells, osteoblasts, or stromal cells. These cells express receptor activator of NF-κB ligand (RANKL) to induce osteoclastogenesis, and T cells, which secrete RANKL, promote osteoclastogenesis during inflammation. Elucidating the detailed effects of TNF-αon bone metabolism may enable the identification of therapeutic targets that can efficiently suppress bone destruction in inflammatory bone diseases. TNF-αis considered to act by directly increasing RANK expression in macrophages and by increasing RANKL in stromal cells. Inflammatory cytokines such as interleukin- (IL-) 12, IL-18, and interferon-γ(IFN-γ) strongly inhibit osteoclast formation. IL-12, IL-18, and IFN-γinduce apoptosis in bone marrow cells treated with TNF-α  in vitro, and osteoclastogenesis is inhibited by the interactions of TNF-α-induced Fas and Fas ligand induced by IL-12, IL-18, and IFN-γ. This review describes and discusses the role of cells concerned with osteoclast formation and immunological reactions in TNF-α-mediated osteoclastogenesisin vitroandin vivo.


2018 ◽  
Vol 75 (10) ◽  
pp. 4515-4529 ◽  
Author(s):  
Adriana C. Motta ◽  
Vitor de Miranda Fedrizzi ◽  
Maria Lourdes Peri Barbo ◽  
Eliana A. R. Duek

Sign in / Sign up

Export Citation Format

Share Document