Cytotoxicity Studies of Curcumin Loaded-Cockle Shell-Derived Calcium Carbonate Nanoparticles

Author(s):  
Maryam Muhammad Mailafiya ◽  
Mohamad Aris Mohd Moklas ◽  
Kabeer Abubakar ◽  
Abubakar Danmaigoro ◽  
Samaila Musa Chiroma ◽  
...  

Background: Cockle shell-derived calcium carbonate nanoparticles (CSCaCO3NP) are natural biogenic inorganic material that is used in drug delivery mainly as a bone-remodeling agent as well as a delivery agent for various therapeutics against bone diseases. Curcumin possess wide safety margin and yet puzzled with the problem of poor bioavailability due to insolubility. Propounding in vitro and in vivo studies on toxicity assessments of newly synthesized nanoparticles are ongoing to overcome some crucial challenges regarding their safety administration. Nanotoxicology has paved ways for concise test protocols to monitor sequential events with regards to possible toxicity of newly synthesized nanomaterials. The development of nanoparticle with no or less toxic effect has gained tremendous attentions. Objective: This study aimed at evaluating the in vitro cytotoxic effect of curcumin-loaded cockle shell-derived calcium carbonate nanoparticles (Cur-CSCaCO3NP) and assessing its biocompatibility on normal cells using standard techniques of WST’s assay. Method: Standard techniques of WST’s assay was used for the evaluation of the biocompatibility and cytotoxicity. Result: The result showed that CSCaCO3NP and Cur-CSCaCO3NP possess minimal toxicity and high biocompatibility on normal cells even at higher dose of 500 µg/ml and 40 µg/ml respectively. Conclusion: CSCaCO3NP can be termed an excellent non-toxic nanocarrier for curcumin delivery. Hence, curcumin loaded cockle shell derived calcium carbonate nanoparticles (Cur-CSCaCO3NP) could further be assessed for various in vivo and in vitro therapeutic applications against various bone related ailments.

2010 ◽  
Vol 1257 ◽  
Author(s):  
Andrea Fornara ◽  
Alberto Recalenda ◽  
Jian Qin ◽  
Abhilash Sugunan ◽  
Fei Ye ◽  
...  

AbstractNanoparticles consisting of different biocompatible materials are attracting a lot of interest in the biomedical area as useful tools for drug delivery, photo-therapy and contrast enhancement agents in MRI, fluorescence and confocal microscopy. This work mainly focuses on the synthesis of polymeric/inorganic multifunctional nanoparticles (PIMN) based on biocompatible di-block copolymer poly(L,L-lactide-co-ethylene glycol) (PLLA-PEG) via an emulsion-evaporation method. Besides containing a hydrophobic drug (Indomethacin), these polymeric nanoparticles incorporate different visualization agents such as superparamagnetic iron oxide nanoparticles (SPION) and fluorescent Quantum Dots (QDs) that are used as contrast agents for Magnetic Resonance Imaging (MRI) and fluorescence microscopy together. Gold Nanorods are also incorporated in such nanostructures to allow simultaneous visualization and photodynamic therapy. MRI studies are performed with different loading of SPION into PIMN, showing an enhancement in T2 contrast superior to commercial contrast agents. Core-shell QDs absorption and emission spectra are recorded before and after their loading into PIMN. With these polymeric/inorganic multifunctional nanoparticles, both MRI visualization and confocal fluorescence microscopy studies can be performed. Gold nanorods are also synthesized and incorporated into PIMN without changing their longitudinal absorption peak usable for lased excitation and phototherapy. In-vitro cytotoxicity studies have also been performed to confirm the low cytotoxicity of PIMN for further in-vivo studies.


2021 ◽  
Vol 12 (6) ◽  
pp. 7817-7844

Herein we describe the synthesis of 2-((E)-(2-(benzo[d]thiazol-2-yl)phenylimino)methyl)-5-methoxyphenol imine base (BMM) and its metal complexes such as [Co(BMM)2] C1, [Co(BMM)(ph)] C2, [Ru(BMM)2] C3 and [Ru(BMM)(ph)] C4. The ligand and its complexes were characterized by spectroscopic, TGA, Powder X-ray diffraction (XRD), and elemental analysis. The coordination number and geometry were confirmed by various experimental data. The Co(III) and Ru(III) complexes are assigned to be having octahedral geometry. Further, the experimental results revealed that complex C2 and C4 emerged as moderate DNA binding intercalators compared to standard intercalators and prominent nuclease activity compared with C1 and C3 complexes. The extent of interaction and intercalation mode was confirmed by monitoring electronic absorption studies, fluorescence quenching probe, and viscosity measurement. Furthermore, the complexes C1-C4 were investigated for their in vitro cytotoxic studies against a panel of human cancer cell lines, viz., A549, NIH3T3, MCF-7, and EAC. Also, the cell adhesion and migration behavior were carried out after administering the complex C2 and C4 to respective cancer cell lines. In mice, the toxicities and tolerabilities of the complex C2 and C4 were also investigated through in vivo studies. The resultant complexes were screened for their microbial inhibition studies through the good diffusion method. All the complexes display moderate microbial inhibition properties compared to their uncoordinated analog.


2021 ◽  
Author(s):  
Karolina Beton ◽  
Piotr Wysocki ◽  
Beata Brozek-Pluska

One of the most important areas of medical science is oncology, which is responsible for both the diagnostics and treatment of cancer diseases. Simultaneously one of the main challenges of oncology is the development of modern drugs effective in the fight against cancer. Statins are a group of biologically active compounds with the activity of 3-hydroxy-3-methyl glutaryl-CoA reductase inhibitors, an enzyme catalyzing the reduction of 3-hydroxy-3-methyl-glutaryl-CoA (HMG-CoA) to mevalonic acid. By acting on this enzyme, statins inhibit the endogenous cholesterol synthesis which in turn causes the reduction of its systemic concentrations. However, in vitro and in vivo studies confirm also the cytostatic and cytotoxic effects of statins against various types of cancer cells including colon cancer. In the presented studies the influence of mevastatin on cancerous colon cells CaCo-2 by Raman spectroscopy and imaging is discussed and compared with biochemistry characteristic for normal colon cells CCD-18Co. Based on vibrational features of colon cells: normal cells CCD-18Co, cancerous cells CaCo-2 and cancerous cells CaCo-2 treated by mevastatin in different concentrations and incubation times we have confirm the influence of this statin on biochemistry composition of cancerous human colon cells. Moreover, the spectroscopic results for colon normal cells and cancerous cells based on data typical for nucleic acids, proteins, lipids have been compared. The cytotoxisity of mevastatin was determined by using XTT tests.


RSC Advances ◽  
2015 ◽  
Vol 5 (37) ◽  
pp. 28848-28856 ◽  
Author(s):  
C. Bothiraja ◽  
Vijay Kumbhar ◽  
Atmaram Pawar ◽  
Karimunnisa Shaikh ◽  
Ravindra Kamble

The aim of the present work was to design gellan gum and calcium carbonate based floating in situ gel as an efficient anti-ulcer formulation using andrographolide (AG) as a model drug.


2008 ◽  
Vol 49 (3) ◽  
pp. 219-230 ◽  
Author(s):  
Hongyu JIANG ◽  
Wei LI ◽  
Xiuyi LI ◽  
Lu CAI ◽  
Guanjun WANG

Planta Medica ◽  
2020 ◽  
Vol 86 (06) ◽  
pp. 415-424
Author(s):  
Júlia Martins ◽  
Joana Coelho ◽  
Maraine Catarina Tadini ◽  
Rebeca Oliveira de Souza ◽  
Sonia Aparecida Figueiredo ◽  
...  

Abstract Ocotea fasciculata presents yangambin (YAN) and its isomer epi-yangambin (EPI-YAN) as major lignans, which are employed as the plant markers for quality control purposes and as potential pharmacological compounds. However, a gap between the pure isomers and safety and efficacy protocols is faced by the scientific community. In this context, this work aimed to report (i) a new and advantageous purifying process in a semi-preparative scale for YAN and EPI-YAN isolation from Ocotea fasciculata, and (ii) an in vitro cytotoxicity study to estimate, for the first time, the LD50 values of the isolated epimers, as well as the influence of albumin concentration in cell culture medium. The best condition for epimers isolation was achieved in normal-phase liquid chromatography. The lignan fraction (LF), previously obtained from the plant ethanolic extract, was purified yielding 17% and 29% of YAN and EPI-YAN, respectively. The in vitro study demonstrated that YAN and EPI-YAN were safe, and only at the highest concentration studied, a decrease on cell viability was observed. The estimated LD50 value was higher than 1612 mg/kg for both epimers. The LF, on the other hand, demonstrated an estimated LD50 of 422 mg/kg. Lignan cytotoxicity studies also evidenced that the higher cell viability was related to the higher concentration of fetal bovine serum as a source of albumin in medium. This is the first time the LD50 and safety of the isolated epimers were estimated, opening up great perspectives of success in in vivo studies.


2021 ◽  
Vol 22 (3) ◽  
pp. 322-329
Author(s):  
B. Adegboro ◽  
O.A. Lawani ◽  
S.E. Oriaifo ◽  
S.A. Abayomi

Ivermectin is an avermectin which is a group of pentacyclic sixteen-membered lactone (macrocyclic lactone disaccharide) derived from the soil bacterium Streptomyces avermitilis. It is a semi-synthetic broad-spectrum anti-helminthic, anti-viral and anti-cancer agent. It has a wide safety margin with low adverse effects when it is used orally. It has, however, so far only been approved by the Food and Drug Administration (FDA) as a broad spectrum anti-parasitic agent. Because ivermectin also has broad activities as an anti-viral agent, we herein review its pharmacokinetic and pharmacodynamic activities, as well as the in vitro and in vivo studies conducted on the drug. It is hoped that this work will pave way for ivermectin being seriously considered as an addition to the drugs available for the management of patients with COVID-19. Keywords: ivermectin; pharmacokinetics; pharmacodynamics; broad-spectrum anti-viral; COVID-19


2020 ◽  
Vol 11 (10) ◽  
Author(s):  
Jiang-ying Ru ◽  
Yan-fen Wang

Abstract Vital osteocytes have been well known to function as an important orchestrator in the preservation of robustness and fidelity of the bone remodeling process. Nevertheless, some key pathological factors, such as sex steroid deficiency and excess glucocorticoids, and so on, are implicated in inducing a bulk of apoptotic osteocytes, subsequently resulting in resorption-related bone loss. As much, osteocyte apoptosis, under homeostatic conditions, is in an optimal state of balance tightly controlled by pro- and anti-apoptotic mechanism pathways. Importantly, there exist many essential signaling proteins in the process of osteocyte apoptosis, which has a crucial role in maintaining a homeostatic environment. While increasing in vitro and in vivo studies have established, in part, key signaling pathways and cross-talk mechanism on osteocyte apoptosis, intrinsic and complex mechanism underlying osteocyte apoptosis occurs in various states of pathologies remains ill-defined. In this review, we discuss not only essential pro- and anti-apoptotic signaling pathways and key biomarkers involved in these key mechanisms under different pathological agents, but also the pivotal role of apoptotic osteocytes in osteoclastogenesis-triggered bone loss, hopefully shedding new light on the attractive and proper actions of pharmacotherapeutics of targeting apoptosis and ensuing resorption-related bone diseases such as osteoporosis and fragility fractures.


2020 ◽  
Vol 8 (3) ◽  
pp. 87-94
Author(s):  
Sandeep Patnaik ◽  
K Madhusudhana Rao ◽  
Vijay Sai

Caco-2 cells were used as in vitro models to assess the cell viability characteristics of the carriers Soluplus®, Gelucire 50/13 and PVP K25 and the nanoformulations of Naproxen and Piroxicam. The assessment of cell viability was done using the tetrazolium salt based MTT assay. Gelucire 50/13 and its NFs were observed to have slightly higher cytotoxicity than PVP and Soluplus® and their respective NFs. All the NFs were observed to follow the cytotoxicity trend of the polymers. Our results show that no significant decrease in cell viability was seen until 0.01% concentration of Gelucire 50/13 for 12-h exposure. The NFs as well as the polymers alone had no significant effect on the viability of Caco-2 cells below 0.01% concentrations. The intestine has a protective mucous layer, whereas the cell culture monolayers do not. The intestinal tissues also have more capacity to recover from trauma than the cultured cells. Hence the present NFs can be expected to show lesser cytotoxicity when subjected to in vivo studies.  


Sign in / Sign up

Export Citation Format

Share Document