scholarly journals Aircraft Trajectory Tracking Using Radar Equipment with Fuzzy Logic Algorithm

Mathematics ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 207 ◽  
Author(s):  
Maria Simona Raboaca ◽  
Catalin Dumitrescu ◽  
Ioana Manta

Radio-electronic means, including equipment for transmissions, radio-location, broadcasting, and navigation, allow the execution of various research missions and combat forces management. Determining the target coordinates and directing the armament towards them, obtaining and processing data about enemies, ensuring the navigation of ships, planes and outer atmospheric means, transmitting orders, decisions, reports and other necessary information for the armed forces; these are only some of the possibilities of radio-electronic technology. Fuzzy logic allows the linguistic description of the laws of command, operation and control of a system. When working with complex and nonlinear systems, it can often be observed that, as their complexity increases, there is a decrease in the significance of the details in describing the global behavior of the system. Even though such an approach may seem inadequate, it is often superior and less laborious than a rigorous mathematical approach. The main argument in favor of fuzzy set theory is to excel in operating with imprecise, vague notions. This article demonstrates the superiority of a fuzzy tracking system over the standard Kalman filter tracking system under the conditions of uneven accelerations and sudden change of direction of the targets, as well as in the case of failure to observe the target during successive scans. A cascading Kalman filtering algorithm was used to solve the speed ambiguity and to reduce the measurement error in real-time radar processing. The cascade filters are extended Kalman filters with controlled gain using fuzzy logic for tracking targets using radar equipment under difficult tracking conditions.

2020 ◽  
Vol 11 (1) ◽  
pp. 103-112
Author(s):  
Dariusz DOMOŃ ◽  
Stanisław DUDA ◽  
Maciej ŁABNO

The PILICA Anti-Aircraft Rocket-Artillery System has been developed for the Armed Forces of the Republic of Poland. The PILICA Anti-Aircraft Rocket-Artillery System is composed of: The Command and Control station, the Radiolocating station, six Firing Units along with Artillery Tractors, two Transport Vehicles, and two Ammunition Vehicles. PILICA's task is that of detecting, recognising, and identifying objects, then automatically dividing the tasks and commands for efficient elimination. PILICA’s Firing Unit has autonomous-mode target detection, identification and elimination capabilities (without cooperating with Command and Control) using equipment such as its optoelectronic head and IFF system. In the system operation mode and in cooperation with Command and Control, the Firing Unit and its subsystems ensure the reception of commands/combat tasks in its fire responsibility zone, as well as reporting statuses and the completion of the given combat tasks. Reporting and command reception from the Command and Control station is automated. The Firing Unit can fire using its automatic tracking system, or when operated in manual mode. The Firing unit has been equipped with a portable remote control console, providing the ability to use it remotely. In case of a power supply malfunction in the Firing Unit, it is possible to use it entirely manually, with the use of artillery weapons. The Firing Unit is equipped with a stabilised, optoelectronic day-night head that enables it to work independently of the weapons when it comes to observation and detecting, as well as identifying, objects. The head constitutes not only an element of the guidance system, but also a source of information for the entire System, as the data on the detected and observed objects is exchanged within the entire command network. PILICA is equipped with an unique formation and training system, providing capabilities for training teams on real equipment, with the use of a virtual simulation management system employing the DIS protocol.


Author(s):  
О. Кravchuk ◽  
V. Symonenkov ◽  
I. Symonenkova ◽  
O. Hryhorev

Today, more than forty countries of the world are engaged in the development of military-purpose robots. A number of unique mobile robots with a wide range of capabilities are already being used by combat and intelligence units of the Armed forces of the developed world countries to conduct battlefield intelligence and support tactical groups. At present, the issue of using the latest information technology in the field of military robotics is thoroughly investigated, and the creation of highly effective information management systems in the land-mobile robotic complexes has acquired a new phase associated with the use of distributed information and sensory systems and consists in the transition from application of separate sensors and devices to the construction of modular information subsystems, which provide the availability of various data sources and complex methods of information processing. The purpose of the article is to investigate the ways to increase the autonomy of the land-mobile robotic complexes using in a non-deterministic conditions of modern combat. Relevance of researches is connected with the necessity of creation of highly effective information and control systems in the perspective robotic means for the needs of Land Forces of Ukraine. The development of the Armed Forces of Ukraine management system based on the criteria adopted by the EU and NATO member states is one of the main directions of increasing the effectiveness of the use of forces (forces), which involves achieving the principles and standards necessary for Ukraine to become a member of the EU and NATO. The inherent features of achieving these criteria will be the transition to a reduction of tasks of the combined-arms units and the large-scale use of high-precision weapons and land remote-controlled robotic devices. According to the views of the leading specialists in the field of robotics, the automation of information subsystems and components of the land-mobile robotic complexes can increase safety, reliability, error-tolerance and the effectiveness of the use of robotic means by standardizing the necessary actions with minimal human intervention, that is, a significant increase in the autonomy of the land-mobile robotic complexes for the needs of Land Forces of Ukraine.


Author(s):  
Andrew A. Michta

This chapter analyses the adaptation of Poland’s defence policy and armed forces to the rapidly changing security environment along NATO’s north-eastern flank. First, it examines the impact of a resurgent Russia on Poland’s security calculus, especially since Russia’s seizure of Crimea and the war in eastern Ukraine. Next, it addresses the evolution of Warsaw’s views on the relative utility of NATO and the European Union and its efforts to return NATO to its traditional territorial defence role. It then focuses on the modernization of Poland’s armed forces, with a special emphasis on doctrinal change, the reform of the command and control system, and the creation of the Territorial Defence units. It also reviews the t state of key hardware purchases as of mid-2017. The chapter concludes with an overall assessment of the level of capabilities and the readiness of the armed forces in the changing threat environment along NATO’s north-eastern flank.


Author(s):  
Marko D. M. Stojanović ◽  
Mladen Mikić ◽  
Patrik Drid ◽  
Julio Calleja-González ◽  
Nebojša Maksimović ◽  
...  

The main aim of the present study was to compare the effects of flywheel strength training and traditional strength training on fitness attributes. Thirty-six well trained junior basketball players (n = 36; 17.58 ± 0.50 years) were recruited and randomly allocated into: Flywheel group (FST; n = 12), traditional strength training group (TST; n = 12) and control group (CON; n = 12). All groups attended 5 basketball practices and one official match a week during the study period. Experimental groups additionally participated in the eight-week, 1–2 d/w equivolume intervention conducted using a flywheel device (inertia = 0.075 kg·m−2) for FST or free weights (80%1 RM) for TST. Pre-to post changes in lower limb isometric strength (ISOMET), 5 and 20 m sprint time (SPR5m and SPR20m), countermovement jump height (CMJ) and change of direction ability (t-test) were assessed with analyses of variance (3 × 2 ANOVA). Significant group-by-time interaction was found for ISOMET (F = 6.40; p = 0.000), CMJ (F = 7.45; p = 0.001), SPR5m (F = 7.45; p = 0.010) and T test (F = 10.46; p = 0.000). The results showed a significantly higher improvement in CMJ (p = 0.006; 11.7% vs. 6.8%), SPR5m (p = 0.001; 10.3% vs. 5.9%) and t-test (p = 0.045; 2.4% vs. 1.5%) for FST compared to the TST group. Simultaneously, th FST group had higher improvement in ISOMET (p = 0.014; 18.7% vs. 2.9%), CMJ (p = 0.000; 11.7% vs. 0.3%), SPR5m (p = 0.000; 10.3% vs. 3.4%) and t-test (p = 0.000; 2.4% vs. 0.6%) compared to the CON group. Players from the TST group showed better results in CMJ (p = 0.006; 6.8% vs. 0.3%) and t-test (p = 0.018; 1.5% vs. 0.6%) compared to players from the CON group. No significant group-by-time interaction was found for sprint 20 m (F = 2.52; p = 0.088). Eight weeks of flywheel training (1–2 sessions per week) performed at maximum concentric intensity induces superior improvements in CMJ, 5 m sprint time and change of direction ability than equivolumed traditional weight training in well trained junior basketball players. Accordingly, coaches and trainers could be advised to use flywheel training for developing power related performance attributes in young basketball players.


Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 535
Author(s):  
Cătălin Alexandru

The article deals with the optimization of the azimuthal tracking mechanism for a photovoltaic (PV) platform, which uses linear actuators as actuation elements for both movements (diurnal and elevation). In the case of diurnal movement, where the platform’s angular field of orientation is large, a mechanism with a relatively simple structure is used for amplifying the actuator’s stroke and avoiding the risk of the system locking itself (by limiting the values of the transmission angle). The optimization study targets the mechanical device, the control device, and the bi-axial tracking program (embodied by the laws of motion in time for the platform’s diurnal and elevation angles) with the purpose of obtaining a high input of solar radiation, with a minimal energy consumption to achieve tracking. The study is carried out by using a virtual prototyping platform, which includes Computer Aided Design (CAD), Multi-Body Systems (MBS), and Design for Control (DFC) computer applications. The mechanical and control devices of the solar tracker are integrated and tested in mechatronic concept. The simulations’ results, which were performed for a set of representative days throughout the year, prove the effectiveness of the proposed design.


Sign in / Sign up

Export Citation Format

Share Document