scholarly journals Hippuristanol Reduces the Viability of Primary Effusion Lymphoma Cells both in Vitro and in Vivo

Marine Drugs ◽  
2013 ◽  
Vol 11 (9) ◽  
pp. 3410-3424 ◽  
Author(s):  
Chie Ishikawa ◽  
Junichi Tanaka ◽  
Harutaka Katano ◽  
Masachika Senba ◽  
Naoki Mori
2004 ◽  
Vol 53 (12) ◽  
pp. 1135-1145 ◽  
Author(s):  
Katrin U. Lundin ◽  
Valentina Screpanti ◽  
Hilde Omholt ◽  
Peter O. Hofgaard ◽  
Hideo Yagita ◽  
...  

2010 ◽  
Vol 34 (7) ◽  
pp. 906-911 ◽  
Author(s):  
Tomomi Towata ◽  
Yuji Komizu ◽  
Shinya Suzu ◽  
Yoko Matsumoto ◽  
Ryuichi Ueoka ◽  
...  

1987 ◽  
Vol 105 (1) ◽  
pp. 553-559 ◽  
Author(s):  
E Roos ◽  
F F Roossien

We studied the interaction of MB6A lymphoma and TAM2D2 T cell hybridoma cells with hepatocyte cultures as an in vitro model for in vivo liver invasion by these tumor cells. A monoclonal antibody against leukocyte function-associated antigen-1 (LFA-1) inhibited adhesion of the tumor cells to the surface of hepatocytes and consequently strongly reduced invasion. This effect was specific since control antibodies, directed against Thy.1 and against T200, of the same isotype, similar affinity, and comparable binding to these cells, did not inhibit adhesion. This suggests that LFA-1 is involved in the formation of liver metastases by lymphoma cells. TAM2D2 T cell hybridoma cells were agglutinated by anti-LFA-1, but not by control antibodies. Reduction of adhesion was not due to this agglutination since monovalent Fab fragments inhibited adhesion as well, inhibition was also seen under conditions where agglutination was minimal, and anti-LFA-1 similarly affected adhesion of MB6A lymphoma cells that were not agglutinated. The two cell types differed in LFA-1 surface density. TAM2D2 cells exhibited 400,000 surface LFA-1 molecules, 10 times more than MB6A cells. Nevertheless, the level of adhesion and the extent of inhibition by the anti-LFA-1 antibody were only slightly larger for the TAM2D2 cells.


Blood ◽  
2010 ◽  
Vol 116 (24) ◽  
pp. 5256-5267 ◽  
Author(s):  
Lina Happo ◽  
Mark S. Cragg ◽  
Belinda Phipson ◽  
Jon M. Haga ◽  
Elisa S. Jansen ◽  
...  

Abstract DNA-damaging chemotherapy is the backbone of cancer treatment, although it is not clear how such treatments kill tumor cells. In nontransformed lymphoid cells, the combined loss of 2 proapoptotic p53 target genes, Puma and Noxa, induces as much resistance to DNA damage as loss of p53 itself. In Eμ-Myc lymphomas, however, lack of both Puma and Noxa resulted in no greater drug resistance than lack of Puma alone. A third B-cell lymphoma-2 homology domain (BH)3-only gene, Bim, although not a direct p53 target, was up-regulated in Eμ-Myc lymphomas incurring DNA damage, and knockdown of Bim levels markedly increased the drug resistance of Eμ-Myc/Puma−/−Noxa−/− lymphomas both in vitro and in vivo. Remarkably, c-MYC–driven lymphoma cell lines from Noxa−/−Puma−/−Bim−/− mice were as resistant as those lacking p53. Thus, the combinatorial action of Puma, Noxa, and Bim is critical for optimal apoptotic responses of lymphoma cells to 2 commonly used DNA-damaging chemotherapeutic agents, identifying Bim as an additional biomarker for treatment outcome in the clinic.


1966 ◽  
Vol 123 (1) ◽  
pp. 55-74 ◽  
Author(s):  
Leslie H. Sobin ◽  
John G. Kidd

Lymphoma 6C3HED-OG cells, known from previous work to be susceptible to the effects of guinea pig serum in vivo and dependent upon extrinsic asparagine for protein synthesis and growth in vitro, remained for the most part morphologically intact and countable in the electronic cell counter following exposures of 1 and 2 hr to the effects of heated (56°C, 30 min) guinea pig serum injected into the peritoneal cavities of mice in which the lymphoma cells were growing rapidly; after exposures of 4 and 6 hr the bulk of the -OG cells remained still intact and countable in the cell counter, though by this time a small proportion of them (5 to 12%) proved stainable with eosin in wet preparations) hence were presumably nonviable. After 12, 16, and 24 hr of exposure, however, the bulk of the -OG cells were either lysed or fragmented, to the extent that they did not register in the cell counter. Morphologic studies of the cells exposed 16 and 24 hr to the effects of heated guinea pig serum in vivo, disclosed that most of the cells then remaining were either frankly necrotic or greatly altered otherwise, marked vacuolation of the cytoplasm being the most conspicuous alteration in cells not yet obviously necrotic. Long before the bulk of the Lymphoma 6C3HED-OG cells had become conspicuously changed morphologically following exposure to the effects of heated guinea pig serum in vivo, they manifested striking alterations in protein metabolism, as was disclosed by "pulse" studies with radioactive valine. For example, the protein metabolism of -OG cells, as measured by their incorporation of L-valine-C14, was sharply curtailed following 15 min of exposure to heated guinea pig serum in vivo, as compared with valine incorporation by cells labeled immediately after exposure to the guinea pig serum. Following exposure to heated guinea pig serum during 60 min, -OG cells incorporated less than half as much L-valine-C14 as did cells labeled immediately after exposure, and the incorporation of L-valine-C14 was still less after 120 min of exposure. By contrast, Lymphoma -RG1 cells, known from previous work to be wholly insusceptible to the effects of guinea pig serum in vivo and independent of need for extrinsic asparagine for protein synthesis and growth in vitro, showed no curtailment whatever of protein synthesis following exposures to the effects of heated guinea pig serum in vivo during periods of 15, 60, and 120 min. Reasons are given for considering the prompt inhibition of protein synthesis in the asparagine-dependent -OG cells a direct result of asparagine-deprivation induced in vivo by the injected guinea pig serum, the L-asparaginase of which presumably converted the available L-asparagine of the host to L-aspartic acid that was not taken up by the -OG cells. The synthesis of deoxyribonucleic acid by Lymphoma 6C3HED-OG cells, as measured by the incorporation of thymidme-H3, determined with the aid of liquid scintillation counting and autoradiography, was also altered by exposure of the lymphoma cells to the effects of heated guinea pig serum in vivo, though not during exposures of 15 and 60 min; only after an exposure of 120 min did the population of -OG cells incorporate notably less thymidine-H3 than did control populations, though after 240 min of exposure the -OG cells incorporated less than one-fifth as much tritiated thymidineas had -OG cells exposed to heated guinea pig serum for 60 min or to heated horse serum for periods up to 240 min. Autoradiographs indicated that DNA synthesis by -OG cells normally proceeds at an intense level that leads to some 60% of these cells being heavily labeled in autoradiographs at any given time; after exposure to the effects of heated guinea pig serum during 2 and 4 hr in vivo, however, the lymphoma cells lost their ability to incorporate enough tritiated thymidine to become heavily labeled, but approximately the same proportion of them (56 to 58%) retained their ability to incorporate sufficient tritiated thymidine to become lightly labeled. The possibility is considered that the inhibition of DNA synthesis in the asparagine-dependent -OG cells exposed to the effects of heated guinea pig serum in vivo may be secondary to the previously manifest inhibition of protein synthesis. Further, in tests of ribonucleic acid metabolism of Lymphoma 6C3HED-OG cells after exposure to the effects of heated guinea pig serum in vivo during periods of 15, 60, 120, and 240 min, the findings indicated that the ability of the lymphoma cells to synthesize RNA, as measured by their capacity to incorporate uridine-5-H3, remained unaltered during the exposures of 15, 60, and 120 min, but was substantially reduced following 240 min of exposure. The findings are considered in relation to the probability, disclosed in part by previous studies, that heated guinea pig serum brings about its effects upon Lymphoma 6C3HED-OG cells in vivo by providing active L-asparaginase in large amounts, which presumably converts the available (extracellular) asparagine of the host to aspartic acid, the latter not being taken up by the lymphoma cells in vivo or in vitro. Hence it seems likely that heated guinea pig serum in this way brings about a state of asparagine deprivation that is responsible for the sequential metabolic and morphologic alterations that become manifest in asparagine-dependent Lymphoma 6C3HED-OG cells following their exposure to the effects of guinea pig serum in vivo, as here described.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2849-2849
Author(s):  
Nicolas Graf ◽  
Zhoulei Li ◽  
Ken Herrmann ◽  
Alexandra Junger ◽  
Daniel Weh ◽  
...  

Abstract Abstract 2849 Purpose: The thymidine analogue [18F]fluorothymidine (FLT) has been shown to reflect proliferation of high-grade lymphoma cells both in preclinical and clinical studies. In this preclinical in vitro and in vivo study we assessed early FLT-uptake as an adequate and robust surrogate marker for response to inhibitors of Nucleophosmin-anaplastic lymphoma kinase (NPM-ALK)-dependent pathways in an anaplastic large cell lymphoma (ALCL) xenotransplant model. Methods: In vitro investigations included viability assessment (MTT assay), cell cycle analysis using propidium iodide staining and western blotting to characterize response of the ALCL cell lines SUDHL-1 and Karpas299 to treatment with heat shock protein 90 (Hsp90) inhibitor NVP-AUY922, the Phosphoinositide 3-kinase (PI3K) inhibitor BGT226 or the mammalian target of rapamycin (mTOR) inhibitor RAD001. Thymidine metabolism in severe combined immunodeficient (SCID) mice bearing SUDHL-1 or Karpas 299 lymphoma xenotransplants was assessed non-invasively prior to and early in the course of therapy (48h to 7 days) by FLT and FDG positron emission tomography (FLT-PET and FDG-PET) using a dedicated small animal PET system. Tumor-to-background ratios (TBR) of FLT-PET were compared to that of PET using the standard radiotracer [18F]fluorodeoxyglucose (FDG). Reference for tumor response was local control of the tumor measured by shifting calliper and histopathological analysis of explanted lymphomas. Results: In vitro, SUDHL-1 cells were sensitive to all three inhibitors (IC50 AUY922= 50 nM; IC50 BGT266= 10 nM; IC50 RAD001= 1 nM). These cells showed a dose-dependent induction of cell-cycle arrest in G1-phase and reduction of S-Phase after 24 to 48 hours and - to a lesser extent - increase of apoptosis. Incubation of SUDHL-1 cells with NVP-AUY922 (50 nM) for 24 hours led to a 70% reduction of ALK level and a abrogation of Akt phosphorylation as determined by western blot analysis. Likewise, no phosphorylation of Akt was detectable after incubation with BGT266 (10 nM) already after 4 hours. RAD001 (0.1-1nM, 24h) completely inhibited phosphorylation of p70 S6K. In contrast, Karpas299 cells were only sensitive to RAD001-induced cell cycle arrest, but insensitive to NVP-AUY922 and BGT266. In vivo, we performed FLT- and FDG-PET scans to monitor inhibition of tumor growth in the course of therapy with NVP-AUY922. Tumor volume in treated animals bearing SUDHL-1 lymphomas showed modest increase within the first week (median increase= + 25%, range -30% to + 80%, n=8) as opposed to a 3.8-fold increase in untreated control animals. After 14 days a clear reduction of tumor mass could be observed (median= - 25%, range -40% to + 30%, n=4). Median TBR of FLT-PET decreased significantly to 40% compared to baseline as earlier as 5 days after initiation of therapy (range 32–67%, n=8, p=0,008). In contrast, the pattern of TBR in FDG-PET did not show any clear tendency (median TBR 79%, range 36%-161%, n=8, p=0,73). We then investigated the ability of FLT-PET to differentiate between sensitive and resistant lymphoma cells. Therefore, mice bearing Karpas299 lymphomas were treated with NVP-AUY922 (resistant in vitro) or RAD001 (sensitive in vitro). According to our in vitro results, no effect was seen during treatment with NVP-AUY299 as indicated by about 3-fold tumor growth on day 7 and increase of median TBR in FLT-PET to 162% (range 106–177%, p=0,008, n=8) on day 2. In contrast, mice receiving RAD001 showed a deceleration of tumor development with doubling of tumor volume within the first week (range -20% to + 320%, n=10) that remained fairly constant over the following weeks. FLT-PET imaging indicated a slight increase of TBR correctly reflecting tumor growth kinetics (median=126%, range 60–129%, no p-value). A larger cohort is currently investigated as well as histopathological analysis of explanted lymphomas. The updated data will be presented at the meeting. Conclusion: In contrast to FDG-PET, FLT-PET is able to predict response to specific inhibitors early in the course of the therapy using a anaplastic large cell lymphoma xenograft model and is able to distinguish between sensitive and resistant lymphoma cells. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3728-3728 ◽  
Author(s):  
Shruti Bhatt ◽  
Brittany Ashlock ◽  
Yaso Natkunam ◽  
Juan Carlos Ramos ◽  
Enrique Mesri ◽  
...  

Abstract Abstract 3728 Primary effusion lymphoma (PEL) is a distinct and aggressive subtype of non-Hodgkin lymphoma (NHL) commonly presenting with pleural, peritoneal, or pericardial malignant effusions usually without a contiguous tumor mass. PEL is most commonly diagnosed in HIV-positive patients, accounting for 4% of all NHLs in this population, yet may also develop in immunosuppressed HIV-negative individuals. While Human Herpes Virus 8 (HHV8 or Kaposi's sarcoma-associated herpesvirus) is directly implicated in the oncogenesis of this lymphoma, most PEL cases are also associated with Epstein-Barr virus and the combination of the two may facilitate transformation. The tumor cells exhibit plasmablastic features and express CD45, CD38, CD138, HHV8 and CD30. PEL is an aggressive tumor characterized by a short median survival of only 6 months with current therapeutic approaches underscoring the urgent need for development of new therapeutics. Brentuximab vedotin (SGN-35) is an antibody-drug conjugate (ADC) comprised of an anti-CD30 monoclonal antibody cAC10 conjugated by a protease-cleavable dipeptide linker to a potent cell killing agent monomethyl auristatin E (MMAE). Following binding to CD30, brentuximab vedotin is rapidly internalized and is transported to lysosomes, where the peptide linker is selectively cleaved allowing binding of the released MMAE to tubulin and leading to cell cycle arrest and apoptosis. Brentuximab vedotin was recently reported to have promising antitumor activity in CD30 expressing tumors, such as Hodgkin and Anaplastic large cell lymphomas. Since PEL tumors are reported to express CD30, we have hypothesized that brentuximab vedotin might be effective in the treatment of this NHL subtype. Initially, we have confirmed by flow cytometry the expression of CD30 on PEL cell lines (UM-PEL 1, UM-PEL 3, BC-1 and BC-3), and by review of immunohistochemistry and flow cytometry results in patients with previous diagnosis of PEL at our institution. To examine in vitro potency of brentuximab vedotin, UM-PEL 1, UM-PEL 3, BC-1 and BC-3 PEL cell lines were treated with brentuximab vedotin at concentration ranging from 0–100 micrograms/ml. Staining with YO-PRO and Propidium Iodide (PI) demonstrated dose dependent cell apoptosis and death in all the cell lines at 72 hours post treatment. In contrast, control IgG conjugated with MMAE failed to induce apoptosis and cell death of PEL cell lines confirming specific brentuximab vedotin cytotoxicity. Furthermore, brentuximab vedotin decreased proliferation of PEL cells at 48 hours leading to a complete proliferation arrest at 72 hours, as measured by MTS assay. These effects were absent after equivalent doses of control IgG conjugated drug treatment. Supportive to this, labeling of cells with PI to detect active DNA content by flow cytometry showed that bretuximab vedotin induced growth arrest in G2/M phase. To further establish the anti-tumor potential of brentuximab vedotin in vivo, we used the direct xenograft UM-PEL 1 model, established in our laboratory (Sarosiek, PNAS 2010), which mimics human PEL tumors. UM-PEL 1 bearing mice were injected intraperitoneally 3 times a week with brentuximab vedotin or control IgG conjugated MMAE for 4 weeks. Brentuximab vedotin treatment markedly prolonged overall survival of UM-PEL-1 bearing mice compared to controls (p Disclosures: No relevant conflicts of interest to declare.


2014 ◽  
Vol 13 (12) ◽  
pp. 2886-2897 ◽  
Author(s):  
Girija Dasmahapatra ◽  
Hiral Patel ◽  
Johnathan Friedberg ◽  
Steven N. Quayle ◽  
Simon S. Jones ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document