scholarly journals A Systematic Review of Recently Reported Marine Derived Natural Product Kinase Inhibitors

Marine Drugs ◽  
2019 ◽  
Vol 17 (9) ◽  
pp. 493 ◽  
Author(s):  
Li ◽  
Wang ◽  
Zhang ◽  
Zhang ◽  
Sajeevan ◽  
...  

Protein kinases are validated drug targets for a number of therapeutic areas, as kinase deregulation is known to play an essential role in many disease states. Many investigated protein kinase inhibitors are natural product small molecules or their derivatives. Many marine-derived natural products from various marine sources, such as bacteria and cyanobacteria, fungi, animals, algae, soft corals, sponges, etc. have been found to have potent kinase inhibitory activity, or desirable pharmacophores for further development. This review covers the new compounds reported from the beginning of 2014 through the middle of 2019 as having been isolated from marine organisms and having potential therapeutic applications due to kinase inhibitory and associated bioactivities. Moreover, some existing clinical drugs based on marine-derived natural product scaffolds are also discussed.

2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Giovanna Cardoso Gajo ◽  
Tamiris Maria de Assis ◽  
Letícia Cristina Assis ◽  
Teodorico Castro Ramalho ◽  
Elaine Fontes Ferreira da Cunha

A series of pyridylthiazole derivatives developed by Lawrence et al. as Rho-associated protein kinase inhibitors were subjected to four-dimensional quantitative structure-activity relationship (4D-QSAR) analysis. The models were generated applying genetic algorithm (GA) optimization combined with partial least squares (PLS) regression. The best model presented validation values ofr2=0.773,qCV2=0.672,rpred2=0.503,Δrm2=0.197,rm test2⁡⁡=0.520,rY-rand2=0.19, andRp2=0.590. Furthermore, analyzing the descriptors it was possible to propose new compounds that predicted higher inhibitory concentration values than the most active compound of the series.


2021 ◽  
Author(s):  
Giang Nguyen ◽  
Jack Bennett ◽  
Sherrie Liu ◽  
Sarah Hancock ◽  
Daniel Winter ◽  
...  

The structural diversity of natural products offers unique opportunities for drug discovery, but challenges associated with their isolation and screening can hinder the identification of drug-like molecules from complex natural product extracts. Here we introduce a mass spectrometry-based approach that integrates untargeted metabolomics with multistage, high-resolution native mass spectrometry to rapidly identify natural products that bind to therapeutically relevant protein targets. By directly screening crude natural product extracts containing thousands of drug-like small molecules using a single, rapid measurement, novel natural product ligands of human drug targets could be identified without fractionation. This method should significantly increase the efficiency of target-based natural product drug discovery workflows.


2021 ◽  
Author(s):  
Giang Nguyen ◽  
Jack Bennett ◽  
Sherrie Liu ◽  
Sarah Hancock ◽  
Daniel Winter ◽  
...  

The structural diversity of natural products offers unique opportunities for drug discovery, but challenges associated with their isolation and screening can hinder the identification of drug-like molecules from complex natural product extracts. Here we introduce a mass spectrometry-based approach that integrates untargeted metabolomics with multistage, high-resolution native mass spectrometry to rapidly identify natural products that bind to therapeutically relevant protein targets. By directly screening crude natural product extracts containing thousands of drug-like small molecules using a single, rapid measurement, novel natural product ligands of human drug targets could be identified without fractionation. This method should significantly increase the efficiency of target-based natural product drug discovery workflows.


2017 ◽  
Vol 22 (9) ◽  
pp. 1071-1083 ◽  
Author(s):  
John S. Lazo ◽  
Kelley E. McQueeney ◽  
Elizabeth R. Sharlow

The drug discovery landscape is littered with promising therapeutic targets that have been abandoned because of insufficient validation, historical screening failures, and inferior chemotypes. Molecular targets once labeled as “undruggable” or “intractable” are now being more carefully interrogated, and while they remain challenging, many target classes are appearing more approachable. Protein tyrosine phosphatases represent an excellent example of a category of molecular targets that have emerged as druggable, with several small molecules and antibodies recently becoming available for further development. In this review, we examine some of the diseases that are associated with protein tyrosine phosphatase dysfunction and use some prototype contemporary strategies to illustrate approaches that are being used to identify small molecules targeting this enzyme class.


2021 ◽  
pp. 0271678X2110284
Author(s):  
Rong Pan ◽  
Song Yu ◽  
Haikun Zhang ◽  
Graham S Timmins ◽  
John Weaver ◽  
...  

Hemorrhagic stroke is a leading cause of death. The causes of intracerebral hemorrhage (ICH)-induced brain damage are thought to include lysis of red blood cells, hemin release and iron overload. These mechanisms, however, have not proven very amenable to therapeutic intervention, and so other mechanistic targets are being sought. Here we report that accumulation of endogenously formed zinc protoporphyrin (ZnPP) also critically contributes to ICH-induced brain damage. ICH caused a significant accumulation of ZnPP in brain tissue surrounding hematoma, as evidenced by fluorescence microscopy of ZnPP, and further confirmed by fluorescence spectroscopy and supercritical fluid chromatography-mass spectrometry. ZnPP formation was dependent upon both ICH-induced hypoxia and an increase in free zinc accumulation. Notably, inhibiting ferrochelatase, which catalyzes insertion of zinc into protoporphyrin, greatly decreased ICH-induced endogenous ZnPP generation. Moreover, a significant decrease in brain damage was observed upon ferrochelatase inhibition, suggesting that endogenous ZnPP contributes to the damage in ICH. Our findings reveal a novel mechanism of ICH-induced brain damage through ferrochelatase-mediated formation of ZnPP in ICH tissue. Since ferrochelatase can be readily inhibited by small molecules, such as protein kinase inhibitors, this may provide a promising new and druggable target for ICH therapy.


2019 ◽  
Vol 24 (5) ◽  
pp. 505-514 ◽  
Author(s):  
David H. Drewry ◽  
Carrow I. Wells ◽  
William J. Zuercher ◽  
Timothy M. Willson

Although the human genome provides the blueprint for life, most of the proteins it encodes remain poorly studied. This perspective describes how one group of scientists, in seeking new targets for drug discovery, used open science through unrestricted sharing of small molecules to shed light on dark matter of the genome. Starting initially with a single pharmaceutical company before expanding to multiple companies, a precedent was established for sharing published kinase inhibitors as chemical tools. The integration of open science and kinase chemogenomics has supported the study of many new potential drug targets by the scientific community.


2018 ◽  
Author(s):  
David Drewry ◽  
Carrow Wells ◽  
William J Zuercher ◽  
Timothy Mark Willson

Although the human genome provides the blueprint for life, most of the proteins it encodes remain poorly studied. We describe how one group of scientists, in seeking new targets for drug discovery, used open science through unrestricted sharing of small molecules to shed light on dark matter of the genome. Starting initially with a single pharmaceutical company before expanding to multiple companies, a precedent was established for sharing published kinase inhibitors as chemical tools. As a result, new drug targets were identified and the science of kinase chemogenomics was established.


Biomedicines ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1131
Author(s):  
Mohamed H. Elsherbeny ◽  
Ahmed Elkamhawy ◽  
Hossam Nada ◽  
Magda H. Abdellattif ◽  
Kyeong Lee ◽  
...  

Although the sea ecosystem offers a broad range of bioactivities including anticancer, none of the FDA-approved antiproliferative protein kinase inhibitors are derived from a marine source. In a step to develop new marine-inspired potent kinase inhibitors with antiproliferative activities, a new series of hybrid small molecules (5a–5g) was designed and synthesized based on chemical moieties derived from two marine natural products (Meridianin E and Leucettamine B). Over a panel of 14 cancer-related kinases, a single dose of 10 µM of the parent hybrid 5a possessing the benzo[d][1,3]dioxole moiety of Leucettamine B was able to inhibit the activity of FMS, LCK, LYN, and DAPK1 kinases with 82.5 ± 0.6, 81.4 ± 0.6, 75.2 ± 0.0, and 55 ± 1.1%, respectively. Further optimization revealed the most potent multiple kinase inhibitor of this new series (5g) with IC50 values of 110, 87.7, and 169 nM against FMS, LCK, and LYN kinases, respectively. Compared to imatinib (FDA-approved multiple kinase inhibitor), compound 5g was found to be ~ 9- and 2-fold more potent than imatinib over both FMS and LCK kinases, respectively. In silico docking simulation models of the synthesized compounds within the active site of FMS, LCK, LYN, and DAPK1 kinases offered reasonable explanations of the elicited biological activities. In an in vitro anticancer assay using a library of 60 cancer cell lines that include blood, lung, colon, CNS, skin, ovarian, renal, prostate, and breast cancers, it was found that compound 5g was able to suppress 60 and 70% of tumor growth in leukemia SR and renal RXF 393 cell lines, respectively. Moreover, an ADME study indicated a suitable profile of compound 5g concerning cell permeability and blood-brain barrier (BBB) impermeability, avoiding possible CNS side effects. Accordingly, compound 5g is reported as a potential lead towards novel antiproliferative marine-derived kinase modulators.


Planta Medica ◽  
2008 ◽  
Vol 74 (09) ◽  
Author(s):  
V Myrianthopoulos ◽  
P Magiatis ◽  
AL Skaltsounis ◽  
L Meijer ◽  
E Mikros

2019 ◽  
Author(s):  
Rohit Bhadoria ◽  
Kefeng Ping ◽  
Christer Lohk ◽  
Ivar Järving ◽  
Pavel Starkov

<div> <div> <div> <p>Conjugation techniques are central to improving intracellular delivery of bioactive small molecules. However, tracking and assessing the overall biological outcome of these constructs remains poorly understood. We addressed this issue by having developed a focused library of heterobivalent constructs based on Rho kinase inhibitors to probe various scenarios. By comparing induction of a phenotype of interest vs. cell viability vs. cellular uptake, we demonstrate that such conjugates indeed lead to divergent cellular outcomes. </p> </div> </div> </div>


Sign in / Sign up

Export Citation Format

Share Document