scholarly journals A Comprehensive Review of Bioactive Peptides from Marine Fungi and Their Biological Significance

Marine Drugs ◽  
2019 ◽  
Vol 17 (10) ◽  
pp. 559 ◽  
Author(s):  
Fadia S. Youssef ◽  
Mohamed L. Ashour ◽  
Abdel Nasser B. Singab ◽  
Michael Wink

Fungal marine microorganisms are a valuable source of bioactive natural products. Fungal secondary metabolites mainly comprise alkaloids, terpenoids, peptides, polyketides, steroids, and lactones. Proteins and peptides from marine fungi show minimal human toxicity and less adverse effects comparable to synthetic drugs. This review summarizes the chemistry and the biological activities of peptides that were isolated and structurally elucidated from marine fungi. Relevant fungal genera including Acremonium, Ascotricha, Aspergillus, Asteromyces, Ceratodictyon, Clonostachys, Emericella, Exserohilum, Microsporum, Metarrhizium, Penicillium, Scytalidium, Simplicillium, Stachylidium, Talaromyces, Trichoderma, as well as Zygosporium were extensively reviewed. About 131 peptides were reported from these 17 genera and their structures were unambiguously determined using 1D and 2D NMR (one and two dimensional nuclear magnetic resonance) techniques in addition to HRMS (high resolution mass spectrometry). Marfey and Mosher reactions were used to confirm the identity of these compounds. About 53% of the isolated peptides exhibited cytotoxic, antimicrobial, and antiviral activity, meanwhile, few of them showed antidiabetic, lipid lowering, and anti-inflammatory activity. However 47% of the isolated peptides showed no activity with respect to the examined biological activity and thus required further in depth biological assessment. In conclusion, when searching for bioactive natural products, it is worth exploring more peptides of fungal origin and assessing their biological activities.

2020 ◽  
Vol 24 (4) ◽  
pp. 354-401 ◽  
Author(s):  
Keisham S. Singh

Marine natural products (MNPs) containing pyrone rings have been isolated from numerous marine organisms, and also produced by marine fungi and bacteria, particularly, actinomycetes. They constitute a versatile structure unit of bioactive natural products that exhibit various biological activities such as antibiotic, antifungal, cytotoxic, neurotoxic, phytotoxic and anti-tyrosinase. The two structure isomers of pyrone ring are γ- pyrone and α-pyrone. In terms of chemical motif, γ-pyrone is the vinologous form of α- pyrone which possesses a lactone ring. Actinomycete bacteria are responsible for the production of several α-pyrone compounds such as elijopyrones A-D, salinipyrones and violapyrones etc. to name a few. A class of pyrone metabolites, polypropionates which have fascinating carbon skeleton, is primarily produced by marine molluscs. Interestingly, some of the pyrone polytketides which are found in cone snails are actually synthesized by actinomycete bacteria. Several pyrone derivatives have been obtained from marine fungi such as Aspergillums flavus, Altenaria sp., etc. The γ-pyrone derivative namely, kojic acid obtained from Aspergillus fungus has high commercial demand and finds various applications. Kojic acid and its derivative displayed inhibition of tyrosinase activity and, it is also extensively used as a ligand in coordination chemistry. Owing to their commercial and biological significance, the synthesis of pyrone containing compounds has been given attention over the past years. Few reviews on the total synthesis of pyrone containing natural products namely, polypropionate metabolites have been reported. However, these reviews skipped other marine pyrone metabolites and also omitted discussion on isolation and detailed biological activities. This review presents a brief account of the isolation of marine metabolites containing a pyrone ring and their reported bio-activities. Further, the review covers the synthesis of marine pyrone metabolites such as cyercene-A, placidenes, onchitriol-I, onchitriol-II, crispatene, photodeoxytrichidione, (-) membrenone-C, lihualide-B, macrocyclic enol ethers and auripyrones-A & B.


2019 ◽  
Vol 41 (4) ◽  
pp. 695-695
Author(s):  
Saima Khan Saima Khan ◽  
Muhammad Imran Tousif Muhammad Imran Tousif ◽  
Naheed Raiz Naheed Raiz ◽  
Mamona Nazir Mamona Nazir ◽  
Mahreen Mukhtar Mahreen Mukhtar ◽  
...  

Silica gel column chromatography of the ethyl acetate fraction of methanol extract of Vincetoxicum stocksii resulted in the separation of three new rarely occurring natural products; [4-(4-(methoxycarbonyl)benzyl)phenyl] carbamic acid (1), bis[di-p-phenylmethane]ethyl carbamate (2), methyl 2-hydroxy-3-(2-hydroxy-5-(3-methylbut-2-enyl)phenyl)-2-(4-hydroxyphenyl) propanoate, stocksiloate(3), along with five known compounds; 1-(4-hydroxy-3-methoxyphenyl)-1,2,3,-propanetriol (4), feruloyl-6-O-β-D-glucopyranoside (5), 4-hydroxy-3,5-dimethoxybenzoic acid (6), apocynin (7) and vincetomine (8). The structures of compounds 1 and 2 were established with help of 1D, 2D-NMR techniques and high resolution mass spectrometry, whereas, compound 3 could only be characterized tentatively by 1D, 2D-NMR techniques. Compounds 1 is new compound while 2 is synthetically known but never been reported from natural source. The known compounds were identified due to 1D NMR analysis and in comparison with the literature values. Compounds 1-3 were found inactive in an anti-urease assay.


Marine Drugs ◽  
2019 ◽  
Vol 17 (11) ◽  
pp. 636 ◽  
Author(s):  
Jianzhou Xu ◽  
Mengqi Yi ◽  
Lijian Ding ◽  
Shan He

Inflammation is a generalized, nonspecific, and beneficial host response of foreign challenge or tissue injury. However, prolonged inflammation is undesirable. It will cause loss function of involve organs, such as heat, pain redness, and swelling. Marine natural products have gained more and more attention due to their unique mechanism of anti-inflammatory action, and have considered a hotspot for anti-inflammatory drug development. Marine-derived fungi are promising sources of structurally unprecedented bioactive natural products. So far, a plethora of new secondary metabolites with anti-inflammatory activities from marine-derived fungi had been widely reported. This review covers 133 fungal metabolites described in the period of 2000 to 2018, including the structures and origins of these secondary metabolites.


Molecules ◽  
2019 ◽  
Vol 24 (15) ◽  
pp. 2753 ◽  
Author(s):  
Sabrina Esposito ◽  
Alessandro Bianco ◽  
Rosita Russo ◽  
Antimo Di Maro ◽  
Carla Isernia ◽  
...  

A large range of chronic and degenerative diseases can be prevented through the use of food products and food bioactives. This study reports the health benefits and biological activities of the Urtica dioica (U. dioica) edible plant, with particular focus on its cancer chemopreventive potential. Numerous studies have attempted to investigate the most efficient anti-cancer therapy with few side effects and high toxicity on cancer cells to overcome the chemoresistance of cancer cells and the adverse effects of current therapies. In this regard, natural products from edible plants have been assessed as sources of anti-cancer agents. In this article, we review current knowledge from studies that have examined the cytotoxic, anti-tumor and anti-metastatic effects of U. dioica plant on several human cancers. Special attention has been dedicated to the treatment of breast cancer, the most prevalent cancer among women and one of the main causes of death worldwide. The anti-proliferative and apoptotic effects of U. dioica have been demonstrated on different human cancers, investigating the properties of U. dioica at cellular and molecular levels. The potent cytotoxicity and anti-cancer activity of the U. dioica extracts are due to its bioactive natural products content, including polyphenols which reportedly possess anti-oxidant, anti-mutagenic and anti-proliferative properties. The efficacy of this edible plant to prevent or mitigate human cancers has been demonstrated in laboratory conditions as well as in experimental animal models, paving the way to the development of nutraceuticals for new anti-cancer therapies.


Molecules ◽  
2019 ◽  
Vol 24 (21) ◽  
pp. 3830
Author(s):  
Hong Le ◽  
Quynh Do ◽  
Mai Doan ◽  
Quyen Vu ◽  
Mai Nguyen ◽  
...  

Marine microorganisms are an invaluable source of novel active secondary metabolites possessing various biological activities. In this study, the extraction and isolation of the marine sediment Penicillium species collected in Vietnam yielded ten secondary metabolites, including sporogen AO-1 (1), 3-indolecarbaldehyde (2), 2-[(5-methyl-1,4-dioxan-2-yl)methoxy]ethanol (3), 2-[(2R-hydroxypropanoyl)amino]benzamide (4), 4-hydroxybenzandehyde (5), chrysogine (6), 3-acetyl-4-hydroxycinnoline (7), acid 1H-indole-3-acetic (8), cyclo (Tyr-Trp) (9), and 2’,3’-dihydrosorbicillin (10). Their structures were identified by the analysis of 1D and 2D NMR data. Among the isolated compounds, 2-[(5-methyl-1,4-dioxan-2-yl)methoxy]ethanol (3) showed a strong inhibitory effect against Enterococcus faecalis with a minimum inhibitory concentration value of 32 µg/mL. Both 2-[(2R-hydroxypropanoyl)amino]benzamide (4) and 4-hydroxybenzandehyde (5) selectively inhibited E. coli with minimum inhibitory concentration values of 16 and 8 µg/mL, respectively. 2’,3’-Dihydrosorbicillin (10) potentially inhibited α-glucosidase activity at a concentration of 2.0 mM (66.31%).


2019 ◽  
Vol 18 (4) ◽  
pp. 406-412
Author(s):  
Hoang Kim Chi ◽  
Tran Thi Hong Ha ◽  
Le Huu Cuong ◽  
Tran Thi Nhu Hang ◽  
Nguyen Dinh Tuan ◽  
...  

In the context of sources for natural products discovery are going scarcer, exploiting biotechnologically potential compounds from marine microbial symbionts is considered a relatively new trend. In our study a total of fifteen fungal strains were isolated from marine algal samples belonging to species Kappaphycus cottonii, K. striatus, Gracilaria eucheumatoides and Betaphycus gelatinus collected in Nha Trang in 2017. The in vitro biological activities, including antimicrobial, cytotoxic and hemolytic activities of ethyl acetate extracts of the fungal strains were determined. From fifteen fungal extracts, six displayed antimicrobial activity against at least one test strain. At 20 μg.ml-1, four fungal extracts were found to express cytotoxic activity on two human cancer cell lines hepatocellular carcinoma (Hep-G2) and breast adenocarcinoma (MCF-7), with G. eucheumatoides being the source of the highest number of producer strains. Hemolytic activity was observed in rabbit erythrocytes under almost all fungal extracts’ effect. No apparent relationship was observed between the biological activities of fungal isolates. The biological assessments uncovered several fungal candidates, such as Bge-1.1, Kco-2.1 and Geu-1.1 with relatively potent antimicrobial and cytotoxic activities while expressing less hemolytic effect at concentrations from 20 μg.ml-1 to 200 μg.ml-1. The results evidenced the potential of exploiting natural products from associated marine microorganisms, especially those for the purpose of pharmaceutical applications.


Marine Drugs ◽  
2018 ◽  
Vol 16 (9) ◽  
pp. 330 ◽  
Author(s):  
Di Zhang ◽  
Chenyan Shu ◽  
Xiaoyuan Lian ◽  
Zhizhen Zhang

As part of our research to discover novel bioactive natural products from marine microorganisms, five bagremycin analogues, including the previously unreported bagremycins F (1) and G (2), were isolated from a marine actinomycete Streptomyces sp. ZZ745. The structures of these compounds were determined by means of NMR spectroscopic analysis, HRESIMS data, and optical rotation. Both bagremycins F (1) and G (2) showed antibacterial activity against Escherichia coli, with MIC values of 41.8 and 61.7 μM, respectively.


2003 ◽  
Vol 75 (2-3) ◽  
pp. 343-352 ◽  
Author(s):  
P. Proksch ◽  
R. Ebel ◽  
R. A. Edrada ◽  
P. Schupp ◽  
W. H. Lin ◽  
...  

This review article presents our group's recent research findings with regard to bioactive natural products from marine sponges and tunicates, as well as from sponge derived fungi. The organisms discussed originate in the Indopacific region, which has an exceptionally rich marine biodiversity. Major topics that are covered in our review include the chemical ecology of sponges, focusing on defense against fishes, as well as the isolation and identification of new bioactive constituents from sponges and tunicates. Sponge derived fungi are introduced as an emerging source for new bioactive metabolites, reflecting the currently growing interest in natural products from marine microorganisms.


2021 ◽  
Vol In Press (In Press) ◽  
Author(s):  
Ashraf Mohamadkhani

Background: In the past decade, metabolites of marine microorganisms have been increasingly used for their various biological activities. An intense effort has been dedicated to assessing the therapeutic efficacy of the marine natural products and metabolites obtained from marine bacteria in cancer therapy. Fast and reliable analytical bacterial genome sequencing provides specialized bioinformatic tools to identify potential gene clusters in bacteria for obtaining secondary metabolites. Objectives: This study aimed to analyze the genome sequences of marine bacteria to recognize bioactive compounds with anti-cancer properties. Methods: Marine bacteria with the genomic sequences registered in the National Center for Biotechnology Information (NCBI) genome database were used in this study. The genome was analyzed for proteins, tRNAs, and rRNAs from GenBank entries by Feature Extract 1.2L Server. The Anti-SMASH webserver was used for the analysis of unique marine bacterial metabolites of the marine bacterial genome, available from the NCBI database. Results: A number of marine bacterial species, including Salinispora arenicola, Salinispora tropica, Crocosphaera watsonii, and Blastopirellula marina encoded metabolites belonging to the polyketide and nonribosomal peptide (NRP) families, showing anti-cancer properties. Among the marine species described, S. tropica and S. arenicola are richer in the genes encoding polyketide and NRP with potential antitumor activities. Conclusions: Marine bacteria are an excellent and exceptional source of anti-cancer compounds. In silico genome analysis of marine bacteria provided an opportunity to evaluate gene clusters for known natural products. Like this chemical engineering approaches for pharmaceutical application are useful in clinical evaluation of cancer treatment.


Sign in / Sign up

Export Citation Format

Share Document