scholarly journals Bioactive Metabolites of Marine Origin Have Unusual Effects on Model Membrane Systems

Marine Drugs ◽  
2020 ◽  
Vol 18 (2) ◽  
pp. 125 ◽  
Author(s):  
Martin Jakubec ◽  
Christian Totland ◽  
Frode Rise ◽  
Elahe Jafari Chamgordani ◽  
Britt Paulsen ◽  
...  

Marine sponges and soft corals have yielded novel compounds with antineoplastic and antimicrobial activities. Their mechanisms of action are poorly understood, and in most cases, little relevant experimental evidence is available on this topic. In the present study, we investigated whether agelasine D (compound 1) and three agelasine analogs (compound 2–4) as well as malonganenone J (compound 5), affect the physical properties of a simple lipid model system, consisting of dioleoylphospahtidylcholine and dioleoylphosphatidylethanolamine. The data indicated that all the tested compounds increased stored curvature elastic stress, and therefore, tend to deform the bilayer which occurs without a reduction in the packing stress of the hexagonal phase. Furthermore, lower concentrations (1%) appear to have a more pronounced effect than higher ones (5–10%). For compounds 4 and 5, this effect is also reflected in phospholipid headgroup mobility assessed using 31P chemical shift anisotropy (CSA) values of the lamellar phases. Among the compounds tested, compound 4 stands out with respect to its effects on the membrane model systems, which matches its efficacy against a broad spectrum of pathogens. Future work that aims to increase the pharmacological usefulness of these compounds could benefit from taking into account the compound effects on the fluid lamellar phase at low concentrations.

2021 ◽  
Vol 9 (1) ◽  
pp. 171
Author(s):  
Yitayal S. Anteneh ◽  
Qi Yang ◽  
Melissa H. Brown ◽  
Christopher M. M. Franco

The misuse and overuse of antibiotics have led to the emergence of multidrug-resistant microorganisms, which decreases the chance of treating those infected with existing antibiotics. This resistance calls for the search of new antimicrobials from prolific producers of novel natural products including marine sponges. Many of the novel active compounds reported from sponges have originated from their microbial symbionts. Therefore, this study aims to screen for bioactive metabolites from bacteria isolated from sponges. Twelve sponge samples were collected from South Australian marine environments and grown on seven isolation media under four incubation conditions; a total of 1234 bacterial isolates were obtained. Of these, 169 bacteria were tested in media optimized for production of antimicrobial metabolites and screened against eleven human pathogens. Seventy bacteria were found to be active against at least one test bacterial or fungal pathogen, while 37% of the tested bacteria showed activity against Staphylococcus aureus including methicillin-resistant strains and antifungal activity was produced by 21% the isolates. A potential novel active compound was purified possessing inhibitory activity against S. aureus. Using 16S rRNA, the strain was identified as Streptomyces sp. Our study highlights that the marine sponges of South Australia are a rich source of abundant and diverse bacteria producing metabolites with antimicrobial activities against human pathogenic bacteria and fungi.


2012 ◽  
Vol 9 (4) ◽  
pp. 2166-2176
Author(s):  
P. Shamsher Kumar ◽  
E. Radha Krishna ◽  
P. Sujatha ◽  
B. Veerendra Kumar

Nature, especially the marine environment, provides the most effective drugs used in human therapy. Among the metazoans, the marine sponges produce the most potent and highly selective bioactive secondary metabolites. These animals (or their associated symbiotic microorganisms) synthesize secondary metabolites whose activity and selectivity has developed during their long evolutionary history. During the course of exploitation of these resources two marine sponges,Fasciospongia cavernosa doc var.brown (dark brown) Fasciospongia cavernosa doc var.yellow (yellow)collected from the visakhapatnam coast of Bay of Bengal were investigated in order to assess the potential of these microorganisms for the production of antimicrobial compounds. The aqueous and organic extracts of both the sponges showed broad spectrum antibiotic activity. In this study a total of 178 microorganisms were isolated from different parts of two sponges and most of them from middle part of the sponge. The isolates were investigated in order to assess the potential of these microorganisms for the production of antimicrobial compounds. Testing for antimicrobial activities were performed against Gram-positive (Staphylococcus aureus, Bacillus subtilis, Bacillus cereus) Gram-negative bacteria (Pseudomonas aeruginosa, Escherichia coli, Proteus vulgaris), fungi (Candida albicans, Aspergillus niger) and 10 pathogenic organisms. Resulting mean diameter of inhibition zones revealed isolates B4 & B6 were the most potent of all the isolates. The present study has revealed the presence of high numbers of diverse culturable microorganisms associated with the marine sponges from Visakhapatnam Coast of Bay of Bengal as well as their potential to produce bioactive metabolites.


2019 ◽  
Vol 8 (1) ◽  
pp. 63
Author(s):  
Huilong Ou ◽  
Mingyu Li ◽  
Shufei Wu ◽  
Linli Jia ◽  
Russell T. Hill ◽  
...  

Some sponges have been shown to accumulate abundant phosphorus in the form of polyphosphate (polyP) granules even in waters where phosphorus is present at low concentrations. But the polyP accumulation occurring in sponges and their symbiotic bacteria have been little studied. The amounts of polyP exhibited significant differences in twelve sponges from marine environments with high or low dissolved inorganic phosphorus (DIP) concentrations which were quantified by spectral analysis, even though in the same sponge genus, e.g., Mycale sp. or Callyspongia sp. PolyP enrichment rates of sponges in oligotrophic environments were far higher than those in eutrophic environments. Massive polyP granules were observed under confocal microscopy in samples from very low DIP environments. The composition of sponge symbiotic microbes was analyzed by high-throughput sequencing and the corresponding polyphosphate kinase (ppk) genes were detected. Sequence analysis revealed that in the low DIP environment, those sponges with higher polyP content and enrichment rates had relatively higher abundances of cyanobacteria. Mantel tests and canonical correspondence analysis (CCA) examined that the polyP enrichment rate was most strongly correlated with the structure of microbial communities, including genera Synechococcus, Rhodopirellula, Blastopirellula, and Rubripirellula. About 50% of ppk genes obtained from the total DNA of sponge holobionts, had above 80% amino acid sequence similarities to those sequences from Synechococcus. In general, it suggested that sponges employed differentiated strategies towards the use of phosphorus in different nutrient environments and the symbiotic Synechococcus could play a key role in accumulating polyP.


2017 ◽  
Vol 22 (3) ◽  
pp. 147
Author(s):  
Masteria Yunovilsa Putra ◽  
Tri Aryono Hadi

GC-MS analysis of the crude extracts of three different species of Indonesian marine sponges has been carried out for identification of bioactive compounds. The GC-MS analysis from Haliclona (Gellius) sp., Lamellodysidea herbacea, and Spheciospongia inconstans revealed the presence of 23, 21, 19 various compounds, respectively and mainly sterols and fatty acids. All the sponge species has been evaluated for antimicrobial activities, cytotoxicity using brine shrimp lethality bioassay and heme polymerization inhibitory activity assay for antiplasmodial activity. In this study, all the sponge species showed antimicrobial activities against at leastone of the test strains. Among them, the extract of sponge Lamellodysidea herbacea displayed activity against two Gram-positive bacteria (S. aureus and B. subtilis) and the Gram-negative bacteria V. cholerae, with inhibition zones of 10.3, 9.2 and 9.5 mm, respectively. The sponge Haliclona (Gellius) sp., showed significant activity against fungal pathogen C. albicans. The sponge Haliclona (Gellius) sp., displayed the ability to inhibit heme polymerization indicating an anti-Plasmodium function and also showed potent cytotoxic activity against the brine shrimp Artemia sp. Keywords: GC-MS analysis, antimicrobial, sponges,bioactive


2020 ◽  
Vol 8 (9) ◽  
pp. 1262
Author(s):  
Charifat Said Hassane ◽  
Mireille Fouillaud ◽  
Géraldine Le Goff ◽  
Aimilia D. Sklirou ◽  
Jean Bernard Boyer ◽  
...  

Aging research aims at developing interventions that delay normal aging processes and some related pathologies. Recently, many compounds and extracts from natural products have been shown to delay aging and/or extend lifespan. Marine sponges and their associated microorganisms have been found to produce a wide variety of bioactive secondary metabolites; however, those from the Southwest of the Indian Ocean are much less studied, especially regarding anti-aging activities. In this study, the microbial diversity of the marine sponge Scopalina hapalia was investigated by metagenomic analysis. Twenty-six bacterial and two archaeal phyla were recovered from the sponge, of which the Proteobacteria phylum was the most abundant. In addition, thirty isolates from S. hapalia were selected and cultivated for identification and secondary metabolites production. The selected isolates were affiliated to the genera Bacillus, Micromonospora, Rhodoccocus, Salinispora, Aspergillus, Chaetomium, Nigrospora and unidentified genera related to the family Thermoactinomycetaceae. Crude extracts from selected microbial cultures were found to be active against seven targets i.e., elastase, tyrosinase, catalase, sirtuin 1, Cyclin-dependent kinase 7 (CDK7), Fyn kinase and proteasome. These results highlight the potential of microorganisms associated with a marine sponge from Mayotte to produce anti-aging compounds. Future work will focus on the isolation and the characterization of bioactive molecules.


In this paper we give an overview of cubic liquid-crystalline mesophases formed by amphiphiles. In § 1 we present brief descriptions of the principal types of translationally ordered lyotropic phases, and describe the locations in the phase diagrams where the different types of cubic phase occur. In §2 we discuss the various forces that act between bilayers. These transverse interactions are relatively straightforward to quantify in the case of lamellar phases, but are more complex for cubic phases, because of the non-planar geometry. In §3 we show how an intrinsic desire for interfacial curvature can lead to a state of physical frustration. We then introduce the curvature elastic energy, and describe how this may be related to the stress profile across the bilayer. In the following sections we focus attention on the inverse (water-in-oil) versions of the non-lamellar phases, although analogous effects also operate in the normal topology (oil-in-water) structures. In §4 we briefly describe the inverse hexagonal phase, which is the simplest inverse phase with curved interfaces. This allows us to illustrate the role of hydrocarbon chain packing frustration in a rather clear way before coming on to the more subtle interplay between packing and curvature frustration, characteristic of the bicontinuous cubic phases, which is discussed in §5. In §6 we describe an entirely different class of cubic phases, with positive interfacial gaussian curvature. These cubic phases are composed of complex packings of discrete micellar or inverse micellar aggregates, which may be quasi-spherical and/or anisotropic in shape. Finally, in §7 we discuss geometric aspects of transitions between lamellar, hexagonal and cubic phases, and show how determination of the epitaxial relations between phases can shed light on the precise mechanisms of the phase transitions.


Author(s):  
M. Chaithra ◽  
S. Vanitha ◽  
A. Ramanathan ◽  
V. Jegadeeshwari ◽  
V. Rajesh ◽  
...  

Aims: To determine the chemical composition of secondary metabolite of cocoa endophytic fungi L. pseudotheobromae PAK-7, L. theobromae TN-R-3 and their anti-oomycete activities. Statistical Design: Multivariate analysis. Place and Duration of Study: Department of Plant Pathology, TNAU, Coimbatore, Tamil Nadu from April 2018 to December 2019. Methodology: Lipophilic extracellular secondary metabolites were extracted using ethyl acetate as a solvent and their chemical composition was detected by Gas Chromatography-Mass Spectrometry (GC-MS) and identified by NIST library and Pub Chem databases. Results: Metabolic profiling of cocoa endophytic fungi  L. pseudotheobromae PAK-7  and  L. theobromae TN-R-3  showed the presence of eleven peaks representing nine compounds. The most abundant compound observed were Acetic acid, 3-methyl-6-oxo-9oxabicyclo[3.3.1]non-2-yl ester, 2H-Pyran-2-one, tetrahydro-4-hydroxy-6-pentyl-, Melezitose, Ethyl à-d-glucopyranoside  collectively representing 58.01% area. In comparison to L. pseudotheobromae PAK-7 GC-MS analysis of L. theobromae TN-R-3 exhibited the presence of 29 peaks. The most abundant compounds were dl-Mevalonic acid lactone, Methyl 6-O-[1-methylpropyl]-á-d-galactopyranoside, 2H-Pyran-2-one, tetrahydro-4-hydroxy-6-pentyl-, Melezitose, Ethyl à-d-glucopyranoside, 1,6-Anhydro-á-d-talopyranose collectively representing 60.47% of the total area. Conclusion: Chemical compositions and anti-oomycete activities of crude secondary metabolites of L. pseudotheobromae PAK-7, L. theobromae TN-R-3 differed entirely depending on the property and abundance of bioactive metabolites.


2020 ◽  
Vol 11 (1) ◽  
pp. 7677-7688

There is no previous work that utilizes the multi-solvent extraction and structure elucidation of Lactobacillus helveticus cell-free supernatant (CFS). In this study, the CFS of Lb. helveticus CNRZ 32 was extracted by ethyl acetate, diethyl ether, dichloromethane, and n-hexane solvents. The extracts of considerable antimicrobial activities were characterized through GC/MS clarify metabolic profiles, TLC for compounds separation, and bio-autography to determine the number and Rf of effective compounds. Ethyl acetate extract possessed the strongest effect on all tested pathogens with inhibition diameter reached 38 mm in the case of Staphylococcus sciuri, while Diethyl ether and Dichloromethane extracts came secondly. The extract of Ethyl acetate mainly included butyl lactate with area % (59.45), while 9,12-Octadecadienoic acid (Z,Z)-, methyl ester and different health beneficial compounds were identified in both Diethyl ether and Dichloromethane extracts. Due to the strong synergism among Chitosan Nanoparticles and different extracts, the MIC values were lowered by about 20 – 50%.


2019 ◽  
Vol 95 (7) ◽  
Author(s):  
Tan Liu ◽  
Shufei Wu ◽  
Ruizhen Zhang ◽  
Dexiang Wang ◽  
Jun Chen ◽  
...  

ABSTRACT Marine sponge-associated microorganisms have proven to be a very promising source of biologically active and pharmaceutically important natural products. In this study, we investigated the diversity and antibacterial potential of bacteria from 49 sponge species isolated from the Beibu Gulf, South China Sea, belonging to 16 genera and several unidentified taxa. Using a variety of selective media, 363 strains with different morphologies were identified to six bacterial taxa, including Proteobacteria (α-subgroup 85 and γ-subgroup 59), Actinobacteria (123), Firmicutes (90), Bacteroidetes (5) and Brevundimonas (1). Media ISP2 and R2A were the most effective for isolating Actinobacteria. One hundred and twenty-three actinobacterial strains clustered into 21 genera identified by 16S rDNA gene sequencing, most of which were from the genus Microbacterium, followed by Pseudonocardia, Streptomyces, Kocuria, Aeromicrobium, Brachybacterium and Nocardiopsis, constituted 82% of total actinobacterial isolates. By using the minimal medium, 92 actinobacterial isolates showed antimicrobial activities, and 51 strains displayed moderate to strong antimicrobial activity that inhibited the growth of more than half of the bacteria tested in this study. Functional genes related to secondary metabolites were screened, revealing that 10% (12/123) of actinobacterial isolates contained PKS-KS genes, 18% (22/123) harbored NRPS-A genes and 6% (7/123) had hybrid PKS-NRPS gene clusters. The sponges Haliclona sp., Callyspongia sp. and Desmacella sp., belonging to class Demonspongiae, and Leucaltis sp. from the class Calcarea, were dominant hosts, harboring the most diverse actinobacterial genera with stronger antimicrobial activities and more diverse PKS/NRPS genes.


Author(s):  
Timothy G. Barraclough

This final chapter summarizes conclusions from the book and highlights a few general areas for future work. The species model for the structure of diversity is found to be useful and largely supported by current data, but is open to future tests against explicit alternative models. It is also a vital component for understanding and predicting contemporary evolution in the diverse systems that all organisms live in. The common evolutionary framework for microbial and multicellular life is highlighted, while drawing attention to current gaps in understanding for each type of organism. Future work needs to scale up to develop model systems of diverse assemblages and clades, including time-series data ranging from contemporary to geological scales. The imminent avalanche of genome data for thousands of individuals sampled within and between species is identified as a key challenge and opportunity. Finally, this chapter repeats the challenge that evolutionary biologists should embrace diversity and need to attempt to predict evolution in diverse systems, in order to deliver solutions of benefit to society.


Sign in / Sign up

Export Citation Format

Share Document