scholarly journals Antimicrobial Activities of Marine Sponge-Associated Bacteria

2021 ◽  
Vol 9 (1) ◽  
pp. 171
Author(s):  
Yitayal S. Anteneh ◽  
Qi Yang ◽  
Melissa H. Brown ◽  
Christopher M. M. Franco

The misuse and overuse of antibiotics have led to the emergence of multidrug-resistant microorganisms, which decreases the chance of treating those infected with existing antibiotics. This resistance calls for the search of new antimicrobials from prolific producers of novel natural products including marine sponges. Many of the novel active compounds reported from sponges have originated from their microbial symbionts. Therefore, this study aims to screen for bioactive metabolites from bacteria isolated from sponges. Twelve sponge samples were collected from South Australian marine environments and grown on seven isolation media under four incubation conditions; a total of 1234 bacterial isolates were obtained. Of these, 169 bacteria were tested in media optimized for production of antimicrobial metabolites and screened against eleven human pathogens. Seventy bacteria were found to be active against at least one test bacterial or fungal pathogen, while 37% of the tested bacteria showed activity against Staphylococcus aureus including methicillin-resistant strains and antifungal activity was produced by 21% the isolates. A potential novel active compound was purified possessing inhibitory activity against S. aureus. Using 16S rRNA, the strain was identified as Streptomyces sp. Our study highlights that the marine sponges of South Australia are a rich source of abundant and diverse bacteria producing metabolites with antimicrobial activities against human pathogenic bacteria and fungi.

Author(s):  
Dilfuza Egamberdieva ◽  
Dilfuza Jabborova ◽  
Svetlana Babich ◽  
Sokhiba Xalmirzaeva ◽  
Kamaliddin Salakhiddinov ◽  
...  

AbstractIn traditional medicine of Uzbekistan, around 20% of herbal plants are used to treat various ailments, including diseases caused by pathogenic bacteria and fungi. Though conventional medicinal plants are common in Uzbekistan, many plant species potentially useful for new pharmaceuticals are less studied. They contain various biological compounds with antibacterial and antifungal activities, that could be developed into drugs. The search for novel antimicrobial compounds, especially against multidrug-resistant pathogens from aromatic and herbal plants is an essential scientific research line. However, the antimicrobial properties of several medicinally important plants from various countries are still unknown. This review aims to provide an up-to-date report on the antimicrobial activity of medicinal plants endemic to Uzbekistan widely used in traditional medicine.


2009 ◽  
Vol 1 (2) ◽  
Author(s):  
Risa Nofiani ◽  
Siti Nurbetty ◽  
Ajuk Sapar

<p>The increase of issues on the antibiotics resistant pathogenic bacteria has triggered high exploration for new antimicrobial compounds. One of the potential sources is sponge-associated bacteria. The aim of this study was to get sponge-associated bacteria extract containing antimicrobial activities. On the basis screening of antimicrobial activity using by streaking on agar medium, there were two potential isolates with antimicrobial activities namely LCS1 and LCS2. The two isolates were cultivated,then secondary metabolite product were extracted using methanol as a solvent. Minimum inhibitory concentrations (MICs) of extract LCS 1 were 1,000 μg/well for S. aureus, 950 μg/well for Salmonella sp.and 800 μg/well for Bacillus subtilis. Minimum inhibitory concentrations of extract LCS 2 were 500 μg/well for S. aureus, 1,050 μg/well for Salmonella sp., 750 μg/well for Bacillus subtilis, 350 μg/well for P. aeruginosa, 750 μg/sumur terhadap B. subtilis. Based on the MIC values, the two assay extracts have a relatively low antimicrobial activity.</p> <p>Keywords:Antimicrobial,Sponges associated bacteria,MICs</p>


Marine Drugs ◽  
2021 ◽  
Vol 19 (8) ◽  
pp. 411
Author(s):  
Maxence Quemener ◽  
Marie Dayras ◽  
Nicolas Frotté ◽  
Stella Debaets ◽  
Christophe Le Meur ◽  
...  

Among the different tools to address the antibiotic resistance crisis, bioprospecting in complex uncharted habitats to detect novel microorganisms putatively producing original antimicrobial compounds can definitely increase the current therapeutic arsenal of antibiotics. Fungi from numerous habitats have been widely screened for their ability to express specific biosynthetic gene clusters (BGCs) involved in the synthesis of antimicrobial compounds. Here, a collection of unique 75 deep oceanic crust fungi was screened to evaluate their biotechnological potential through the prism of their antimicrobial activity using a polyphasic approach. After a first genetic screening to detect specific BGCs, a second step consisted of an antimicrobial screening that tested the most promising isolates against 11 microbial targets. Here, 12 fungal isolates showed at least one antibacterial and/or antifungal activity (static or lytic) against human pathogens. This analysis also revealed that Staphylococcus aureus ATCC 25923 and Enterococcus faecalis CIP A 186 were the most impacted, followed by Pseudomonas aeruginosa ATCC 27853. A specific focus on three fungal isolates allowed us to detect interesting activity of crude extracts against multidrug-resistant Staphylococcus aureus. Finally, complementary mass spectrometry (MS)-based molecular networking analyses were performed to putatively assign the fungal metabolites and raise hypotheses to link them to the observed antimicrobial activities.


Marine Drugs ◽  
2020 ◽  
Vol 18 (7) ◽  
pp. 369 ◽  
Author(s):  
Dawrin Pech-Puch ◽  
Mar Pérez-Povedano ◽  
Patricia Gómez ◽  
Marta Martínez-Guitián ◽  
Cristina Lasarte-Monterrubio ◽  
...  

A total of 51 sponges (Porifera) and 13 ascidians (Chordata) were collected on the coast of the Yucatan Peninsula (Mexico) and extracted with organic solvents. The resulting extracts were screened for antibacterial activity against four multidrug-resistant (MDR) bacterial pathogens: the Gram-negative Acinetobacter baumannii, Klebsiella pneumoniae, and Pseudomonas aeruginosa and the Gram-positive Staphylococcus aureus. The minimum inhibitory concentrations (MICs) of the organic extracts of each marine organism were determined using a broth microdilution assay. Extracts of eight of the species, in particular the Agelas citrina and Haliclona (Rhizoniera) curacaoensis, displayed activity against some of the pathogens tested. Some of the extracts showed similar MIC values to known antibiotics such as penicillins and aminoglycosides. This study is the first to carry out antimicrobial screening of extracts of marine sponges and ascidians collected from the Yucatan Peninsula. Bioassay-guided fractionation of the active extracts from the sponges Amphimedon compressa and A. citrina displayed, as a preliminary result, that an inseparable mixture of halitoxins and amphitoxins and (-)-agelasine B, respectively, are the major compounds responsible for their corresponding antibacterial activities. This is the first report of the antimicrobial activity of halitoxins and amphitoxins against major multidrug-resistant human pathogens. The promising antibacterial activities detected in this study indicate the coast of Yucatan Peninsula as a potential source of a great variety of marine organisms worthy of further research.


2018 ◽  
Vol 22 (6) ◽  
pp. 667-675 ◽  
Author(s):  
T. I. Odintsova ◽  
M. P. Slezina ◽  
E. A. Istomina

Antimicrobial peptides (AMPs) are important components of defense system in both plants and animals. They represent an ancient mechanism of innate immunity providing rapid first line of defense against pathogens. Plant AMPs are classified into several families: thionins, defensins, nonspecific lipid-transfer proteins, hevein- and knottin-type peptides, hairpinins and macrocyclic peptides (cyclotides). The review focuses on the thionin family. Thionins comprise a plant-specific AMP family that consists of short (~5 kDA) cysteine-rich peptides containing 6 or 8 cysteine residues with antimicrobial and toxic properties. Based on similarity in amino acid sequences and the arrangement of disulphide bonds, five structural classes of thionins are discriminated. The three-dimensional structures of a number of thionins were determined. The amphipathic thionin molecule resembles the Greek letter Г, in which the long arm is formed by two antiparallel α-helices, while the short one, by two parallel β-strands. The residues responsible for the antimicrobial activity of thionins were identified. Thionins are synthesized as precursor proteins consisting of a signal peptide, the mature peptide region and the C-terminal prodomain. Thionins protect plants from pathogenic bacteria and fungi acting directly on the membranes of microorganisms at micromolar concentrations, although their precise mode of action remains unclear. In addition to plant pathogens, thionins inhibit growth of a number of human pathogens and opportunistic microorganisms, such as Candida spp., Saccharomyces cerevisiae, Fusarium solani, Staphylococcus aureus and Escherichia coli. Thionins are toxic to different types of cells including mammalian cancer cell lines. Transgenic plants expressing thionin genes display enhanced resistance to pathogens. A wide range of biological activities makes thionins promising candidates for practical application in agriculture and medicine.


2017 ◽  
Vol 7 (1) ◽  
pp. 14-18
Author(s):  
Nayan Chandra Das ◽  
Farzana Hossaini ◽  
Saurab Kishore Munshi

The present study was carried out to assess the degree of microbiological proliferation in tannery wastes and the surrounding environment of the tannery industries. In this regard, a total of 8 tannery waste (n=4) and environmental (n=4) samples were tested. All the samples contained a huge load of bacteria and fungi in an average of 108 cfu/g or ml. An extended numbers of pathogenic bacteria were recovered. Among the pathogenic bacteria, Staphylococcus spp. was predominant. Most of the samples exhibited the presence of Pseudomonas spp. Salmonella spp. and fecal coliform were found each in one sample. Bacillus spp., Escherichia coli, Klebsiella spp. and Vibrio spp. were found in few samples. The average load of the pathogens was 104 cfu/g or ml. All the pathogenic isolates were found to be multidrug resistant. Higher resistance was found against penicillin and streptomycin. Tannery waste after lather treatment sample showed antibacterial activity against all the pathogens tested. Overall, presence of pathogenic microorganisms with multidrug resistance traits may pose serious public health threats. Stamford Journal of Microbiology, Vol.7(1) 2017: 14-18


Marine Drugs ◽  
2020 ◽  
Vol 18 (2) ◽  
pp. 125 ◽  
Author(s):  
Martin Jakubec ◽  
Christian Totland ◽  
Frode Rise ◽  
Elahe Jafari Chamgordani ◽  
Britt Paulsen ◽  
...  

Marine sponges and soft corals have yielded novel compounds with antineoplastic and antimicrobial activities. Their mechanisms of action are poorly understood, and in most cases, little relevant experimental evidence is available on this topic. In the present study, we investigated whether agelasine D (compound 1) and three agelasine analogs (compound 2–4) as well as malonganenone J (compound 5), affect the physical properties of a simple lipid model system, consisting of dioleoylphospahtidylcholine and dioleoylphosphatidylethanolamine. The data indicated that all the tested compounds increased stored curvature elastic stress, and therefore, tend to deform the bilayer which occurs without a reduction in the packing stress of the hexagonal phase. Furthermore, lower concentrations (1%) appear to have a more pronounced effect than higher ones (5–10%). For compounds 4 and 5, this effect is also reflected in phospholipid headgroup mobility assessed using 31P chemical shift anisotropy (CSA) values of the lamellar phases. Among the compounds tested, compound 4 stands out with respect to its effects on the membrane model systems, which matches its efficacy against a broad spectrum of pathogens. Future work that aims to increase the pharmacological usefulness of these compounds could benefit from taking into account the compound effects on the fluid lamellar phase at low concentrations.


Author(s):  
Risa Nofiani ◽  
Siti Nurbetty ◽  
Ajuk Sapar

The increase of issues on the antibiotics resistant pathogenic bacteria has triggered high exploration for new antimicrobial compounds. One of the potential sources is sponge-associated bacteria. The aim of this study was to get sponge-associated bacteria extract containing antimicrobial activities. On the basis screening of antimicrobial activity using by streaking on agar medium, there were two potential isolates with antimicrobial activities namely LCS1 and LCS2. The two isolates were cultivated,then secondary metabolite product were extracted using methanol as a solvent. Minimum inhibitory concentrations (MICs) of extract LCS 1 were 1,000 μg/well for S. aureus, 950 μg/well for Salmonella sp.and 800 μg/well for Bacillus subtilis. Minimum inhibitory concentrations of extract LCS 2 were 500 μg/well for S. aureus, 1,050 μg/well for Salmonella sp., 750 μg/well for Bacillus subtilis, 350 μg/well for P. aeruginosa, 750 μg/sumur terhadap B. subtilis. Based on the MIC values, the two assay extracts have a relatively low antimicrobial activity. Keywords:Antimicrobial,Sponges associated bacteria,MICs


Sign in / Sign up

Export Citation Format

Share Document