scholarly journals Collagen Peptides from Swim Bladders of Giant Croaker (Nibea japonica) and Their Protective Effects against H2O2-Induced Oxidative Damage toward Human Umbilical Vein Endothelial Cells

Marine Drugs ◽  
2020 ◽  
Vol 18 (8) ◽  
pp. 430
Author(s):  
Jiawen Zheng ◽  
Xiaoxiao Tian ◽  
Baogui Xu ◽  
Falei Yuan ◽  
Jianfang Gong ◽  
...  

Five different proteases were used to hydrolyze the swim bladders of Nibea japonica and the hydrolysate treated by neutrase (collagen peptide named SNNHs) showed the highest DPPH radical scavenging activity. The extraction process of SNNHs was optimized by response surface methodology, and the optimal conditions were as follows: a temperature of 47.2 °C, a pH of 7.3 and an enzyme concentration of 1100 U/g, which resulted in the maximum DPPH clearance rate of 95.44%. Peptides with a Mw of less than 1 kDa (SNNH-1) were obtained by ultrafiltration, and exhibited good scavenging activity for hydroxyl radicals, ABTS radicals and superoxide anion radicals. Furthermore, SNNH-1 significantly promoted the proliferation of HUVECs, and the protective effect of SNNH-1 against oxidative damage of H2O2-induced HUVECs was investigated. The results indicated that all groups receiving SNNH-1 pretreatment showed an increase in GSH-Px, SOD, and CAT activities compared with the model group. In addition, SNNH-1 pretreatment reduced the levels of ROS and MDA in HUVECs with H2O2-induced oxidative damage. These results indicate that collagen peptides from swim bladders of Nibea japonica can significantly reduce the oxidative stress damage caused by H2O2 in HUVECs and provides a basis for the application of collagen peptides in the food industry, pharmaceuticals, and cosmetics.

2008 ◽  
Vol 48 (10) ◽  
pp. 1345 ◽  
Author(s):  
Darin C. Bennett ◽  
William E. Code ◽  
David V. Godin ◽  
Kimberly M. Cheng

The antioxidant properties of emu oil were compared with oils derived from the fat of other avian species. We first examined their free radical scavenging activity against the 2,2-diphenyl-1-picryl hydracyl radical. The concentration of emu oil in the test solution that caused 50% neutralisation (IC50) was variable (24.5 ± 5.9 mg/mL, range 5.3–55.4 mg/mL), but similar to values obtained for other ratites (10.7 ± 5.9 mg/mL). In contrast, the IC50 values for duck and chicken oil were much higher (118.0 ± 8.1 mg/mL). The variability in the radical scavenging activity of emu oil preparations may reflect variations in the diets of the birds, the processing protocol and/or the storage age of the oil. We also evaluated some of the ratite oils for their inhibitory capacity on human erythrocyte membrane oxidation, by measuring the reduction of the thiobarbituric acid-reactive substance (TBAR) production. Emu oil had a greater effect in decreasing TBAR production than either the ostrich or rhea oil, suggesting that it offers more protection than the other ratite oils against oxidative damage. In conclusion, we demonstrated that emu oil has both antioxidant properties in vitro and a protective role against oxidative damage in a model biological membrane system. The antioxidant or radical scavenging properties of emu oil appear to be due to minor constituents in the non-triglyceride fraction of the oil, while its high ratio of unsaturated to saturated fatty acids (UFA : SFA) offers protection against oxidative damage.


Toxins ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 748
Author(s):  
Neda Alvarez-Ortega ◽  
Karina Caballero-Gallardo ◽  
María Taboada-Alquerque ◽  
Jackeline Franco ◽  
Elena E. Stashenko ◽  
...  

Fridericia chica (Bignoniaceae) is a traditional medicinal plant. The aim of this research was to determine the protective effects of the hydroethanolic extract from the F. chica leaves (HEFc) against the cytotoxicity of zearalenone (α-ZEL) and β-ZEL on SH-SY5Y cells. Free radical scavenging activity of HEFc was evaluated using the DPPH method. The cytotoxicity of both zearalenone metabolites and HEFc was examined using MTT test, as was the cytoprotective effects of the HEFc on cells treated with these mycotoxins. The chemical composition of HEFc was determined using UPLC-QTOF-MS/MS. HEFc elicited good DPPH radical scavenging activity following a concentration-dependent relationship. Cells exposed to α-ZEL exhibited a viability ˂50% after 48 h of treatment (25 and 50 µM), while those exposed to β-ZEL showed viability ˂50% (100 µM) and ˂25% (25-100 µM) after 24 and 48 h of exposure, respectively. HEFc showed a significant increase in cell viability after exposure to α-ZEL (25 and 50 µM) and β-ZEL (6–100 µM) (p < 0.05). UPLC-QTOF-MS/MS analyses allowed the identification of 10 phytochemical components in the HEFc. In short, the hydroethanolic extract of F. chica grown in Colombian Caribbean can protect against the effects of mycotoxins and it is a valuable source of compounds with antioxidant properties.


2018 ◽  
Vol 16 (3) ◽  
pp. 143-153 ◽  
Author(s):  
Naymul KARIM ◽  
Lanchakon CHANUDOM ◽  
Jitbanjong TANGPONG

Hyperglycemia is well-known for inducing cellular oxidative damage in type II diabetes (T2D) patients. This research addressed the cytoprotective and anti-genotoxic effect of xanthone derivatives from Garcinia mangostana against hydrogen peroxide (H2O2)-induced human peripheral blood mononuclear cell (PBMC) and blood leukocytes damage of the normal and T2D volunteers. The cytoprotective effects of an aqueous extract of xanthone (100 and 200 µg/mL) was assessed on cell viability and free radical scavenging activity using the trypan blue exclusion method on PBMC cells. Malondialdehyde (MDA) levels and lactate dehydrogenase (LDH) activity were measured as cellular oxidative damage markers and estimated from culture medium of PBMCs of normal and T2D volunteers. The anti-genotoxicity was assessed as the protective effect of xanthone against H2O2-induce DNA damage of blood leukocytes of the normal volunteers following comet assay technique. Xanthone and Gallic acid (control) concentrations 100, 200 and 100 µg/mL significantly (P < 0.05) protected from H2O2 (20 mM)-induced oxidative damage of PBMCs. It was confirmed by increased cell viability and free radical scavenging activity coupled with the decreased MDA and LDH levels in cell culture medium compared to H2O2 (20 mM)-treated group. In H2O2 (40 mM)-induced blood leukocytes of normal volunteers, different concentration xanthone (50 - 500 µg/mL) significantly (P < 0.05) improved the anti-genotoxicity effect compared to negative/positive control group by lowering comet formation. Xanthone treatments on PBMCs and blood leukocytes of the normal and T2D volunteers could attenuate the H2O2-induced cellular oxidative damage and cell death via exhibiting antioxidant and free radical scavenging activities.


Agronomy ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 27 ◽  
Author(s):  
Yu Tsai ◽  
Ching-Gong Lin ◽  
Wei-Lin Chen ◽  
Yu-Chun Huang ◽  
Cheng-Yu Chen ◽  
...  

Hylocereus polyrhizus cultivation started in Taiwan around the 1980s. The pulp of the fruit is edible and contains small, black, and soft seeds. The peel of the fruits are covered with bracts. The H. polyrhizus fruit is known to be rich in nutrients and minerals. To evaluate the potential applications of the agricultural wastes of H. polyrhizus, the stem, peel, and flower of H. polyrhizus were extracted with solutions of ethanol and water mixed in different ratios. Data was collected for the H. polyrhizus extract including the yield of total phenolics, the total flavonoids, and antioxidant activity, as determined by the 2-2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) radical scavenging assay. The protective effects of H. polyrhizus extract on DNA was investigated using an assay with the pUC19 plasmid. The cell proliferation and migration effects were evaluated in the NIH-3T3 fibroblast cell line. The greatest yield of extract from the stem of H. polyrhizus was 44.70 ± 1.77% which was obtained using 50% aqueous ethanol and the greatest yield of extract from the peel was 43.47% using distilled water. The stem extract, which was prepared with 95% aqueous ethanol, had the highest composition of phenolics and flavonoids as well as the best DPPH radical scavenging activity. The stem extract had excellent ABTS radical scavenging activity as well. The stem, peel, and flower extracts, which were prepared using 95% aqueous ethanol, showed excellent results in protecting themselves from DNA damage, similar to the effect of 0.3 mg/mL ferulic acid. None of the extracts were able to promote cell proliferation at concentrations of 250 μg/mL to 2,000 μg/mL in a 24 h period. The 1000 μg/mL stem and flower extracts in 95% aqueous ethanol promoted considerable cell migration after a 24 h period.


2011 ◽  
Vol 148-149 ◽  
pp. 583-586
Author(s):  
Bin Wang ◽  
Yan Wang ◽  
Zhong Rui Li ◽  
Lin Wei Huang ◽  
You Le Qu

To meet the demand of food, pharmaceutical and cosmetics industry, study on the oligosaccharide- collagen peptide complexes has both scientific significance and application values. In the text, the preparation process and antioxidant capacity of oligochitosan-collagen peptides complexes were reported. The resultes indicated that the maximum DPPH radical-scavenging activity of oligochitosan-collagen peptide complexe was reached to 19.26 % when the ratio of oligochitosan to collagen peptide was 80:20, and the activity was stronger than the oligochitosan and collagen peptide at the same concentration in the detection range. In combination with the results of ion-exchange chromatography, we could concluded that the intermolecular chain associations were formed between oligochitosan chains and collagen peptide molecules driven by the electrostatic, intermolecular hydrogen bond and hydrophobic interactions. The results opened a new perspective on the utilization of oligochitosan-collagen peptide complexes as drug, food or cosmetic additives.


Sign in / Sign up

Export Citation Format

Share Document