scholarly journals Structure Elucidation and Functional Studies of a Novel β-hairpin Antimicrobial Peptide from the Marine Polychaeta Capitella teleta

Marine Drugs ◽  
2020 ◽  
Vol 18 (12) ◽  
pp. 620
Author(s):  
Pavel V. Panteleev ◽  
Andrey V. Tsarev ◽  
Victoria N. Safronova ◽  
Olesia V. Reznikova ◽  
Ilia A. Bolosov ◽  
...  

Endogenous antimicrobial peptides (AMPs) are evolutionary ancient molecular factors of innate immunity that play a key role in host defense. Among the most active and stable under physiological conditions AMPs are the peptides of animal origin that adopt a β-hairpin conformation stabilized by disulfide bridges. In this study, a novel BRICHOS-domain related AMP from the marine polychaeta Capitella teleta, named capitellacin, was produced as the recombinant analogue and investigated. The mature capitellacin exhibits high homology with the known β-hairpin AMP family—tachyplesins and polyphemusins from the horseshoe crabs. The β-hairpin structure of the recombinant capitellacin was proved by CD and NMR spectroscopy. In aqueous solution the peptide exists as monomeric right-handed twisted β-hairpin and its structure does not reveal significant amphipathicity. Moreover, the peptide retains this conformation in membrane environment and incorporates into lipid bilayer. Capitellacin exhibits a strong antimicrobial activity in vitro against a wide panel of bacteria including extensively drug-resistant strains. In contrast to other known β-hairpin AMPs, this peptide acts apparently via non-lytic mechanism at concentrations inhibiting bacterial growth. The molecular mechanism of the peptide antimicrobial action does not seem to be related to the inhibition of bacterial translation therefore other molecular targets may be assumed. The reduced cytotoxicity against human cells and high antibacterial cell selectivity as compared to tachyplesin-1 make it an attractive candidate compound for an anti-infective drug design.

2021 ◽  
Vol 12 (1) ◽  
pp. 16-26
Author(s):  
Kimberly To ◽  
Ruoqiong Cao ◽  
Aram Yegiazaryan ◽  
James Owens ◽  
Kayvan Sasaninia ◽  
...  

Abstract Tuberculosis (TB) caused by Mycobacterium tuberculosis (M. tb) still remains a devastating infectious disease in the world. There has been a daunting increase in the incidence of Type 2 Diabetes Mellitus (T2DM) worldwide. T2DM patients are three times more vulnerable to M. tb infection compared to healthy individuals. TB-T2DM coincidence is a challenge for global health control. Despite some progress in the research, M. tb still has unexplored characteristics in successfully evading host defenses. The lengthy duration of treatment, the emergence of multi-drug-resistant strains and extensive-drug-resistant strains of M. tb have made TB treatment very challenging. Previously, we have tested the antimycobacterial effects of everolimus within in vitro granulomas generated from immune cells derived from peripheral blood of healthy subjects. However, the effectiveness of everolimus treatment against mycobacterial infection in individuals with T2DM is unknown. Furthermore, the effectiveness of the combination of in vivo glutathione (GSH) supplementation in individuals with T2DM along with in vitro treatment of isolated immune cells with everolimus against mycobacterial infection has never been tested. Therefore, we postulated that liposomal glutathione (L-GSH) and everolimus would offer great hope for developing adjunctive therapy for mycobacterial infection. L-GSH or placebo was administered to T2DM individuals orally for three months. Study subjects’ blood was drawn pre- and post-L-GSH/or placebo supplementation, where Peripheral Blood Mononuclear Cells (PBMCs) were isolated from whole blood to conduct in vitro studies with everolimus. We found that in vitro treatment with everolimus, an mTOR (membrane target of rapamycin) inhibitor, significantly reduced intracellular M. bovis BCG infection alone and in conjunction with L-GSH supplementation. Furthermore, we found L-GSH supplementation coupled with in vitro everolimus treatment produced a greater effect in inhibiting the growth of intracellular Mycobacterium bovis BCG, than with the everolimus treatment alone. We also demonstrated the functions of L-GSH along with in vitro everolimus treatment in modulating the levels of cytokines such as IFN-γ, TNF-α, and IL-2 and IL-6, in favor of improving control of the mycobacterial infection. In summary, in vitro everolimus-treatment alone and in combination with oral L-GSH supplementation for three months in individuals with T2DM, was able to increase the levels of T-helper type 1 (Th1) cytokines IFN-γ, TNF-α, and IL-2 as well as enhance the abilities of granulomas from individuals with T2DM to improve control of a mycobacterial infection.


2004 ◽  
Vol 57 (6) ◽  
pp. 400-402 ◽  
Author(s):  
KAZUHIKO OTOGURO ◽  
AKI ISHIYAMA ◽  
MIYUKI KOBAYASHI ◽  
HITOMI SEKIGUCHI ◽  
TAKASHI IZUHARA ◽  
...  

2017 ◽  
Vol 61 (3) ◽  
Author(s):  
D. J. Farrell ◽  
H. S. Sader ◽  
P. R. Rhomberg ◽  
N. E. Scangarella-Oman ◽  
R. K. Flamm

ABSTRACT Gepotidacin (formerly GSK2140944) is a novel, first-in-class, triazaacenaphthylene antibacterial that inhibits bacterial DNA gyrase and topoisomerase IV via a unique mechanism and has demonstrated in vitro activity against Neisseria gonorrhoeae, including drug-resistant strains, and also targets pathogens associated with other conventional and biothreat infections. Broth microdilution was used to evaluate the MIC and minimum bactericidal concentration (MBC) activity of gepotidacin and comparators against 25 N. gonorrhoeae strains (including five ciprofloxacin-nonsusceptible strains). Gepotidacin activity was also evaluated against three N. gonorrhoeae strains (including a ciprofloxacin-nonsusceptible strain) for resistance development, against three N. gonorrhoeae strains (including two tetracycline- and azithromycin-nonsusceptible strains) using time-kill kinetics and checkerboard methods, and against two N. gonorrhoeae strains for the investigation of postantibiotic (PAE) and subinhibitory (PAE-SME) effects. The MIC50 and MIC90 for gepotidacin against the 25 N. gonorrhoeae isolates tested were 0.12 and 0.25 μg/ml, respectively. The MBC50 and MBC90 for gepotidacin were 0.25 and 0.5 μg/ml, respectively. Gepotidacin was bactericidal, and single-step resistance selection studies did not recover any mutants, indicating a low rate of spontaneous single-step resistance. For combinations of gepotidacin and comparators tested using checkerboard methods, there were no instances where antagonism occurred and only one instance of synergy (with moxifloxacin; fractional inhibitory concentration, 0.375). This was not confirmed by in vitro time-kill studies. The PAE for gepotidacin against the wild-type strain ranged from 0.5 to >2.5 h, and the PAE-SME was >2.5 h. These in vitro data indicate that further study of gepotidacin is warranted for potential use in treating infections caused by N. gonorrhoeae.


2017 ◽  
Vol 62 (1) ◽  
Author(s):  
Manoon Leechawengwongs ◽  
Therdsak Prammananan ◽  
Sarinya Jaitrong ◽  
Pamaree Billamas ◽  
Nampueng Makhao ◽  
...  

ABSTRACT New fluoroquinolones (FQs) have been shown to be more active against drug-resistant Mycobacterium tuberculosis strains than early FQs, such as ofloxacin. Sitafloxacin (STFX) is a new fluoroquinolone with in vitro activity against a broad range of bacteria, including M. tuberculosis. This study aimed to determine the in vitro activity of STFX against all groups of drug-resistant strains, including multidrug-resistant M. tuberculosis (MDR M. tuberculosis), MDR M. tuberculosis with quinolone resistance (pre-XDR), and extensively drug-resistant (XDR) strains. A total of 374 drug-resistant M. tuberculosis strains were tested for drug susceptibility by the conventional proportion method, and 95 strains were randomly submitted for MIC determination using the microplate alamarBlue assay (MABA). The results revealed that all the drug-resistant strains were susceptible to STFX at a critical concentration of 2 μg/ml. Determination of the MIC90s of the strains showed different MIC levels; MDR M. tuberculosis strains had a MIC90 of 0.0625 μg/ml, whereas pre-XDR and XDR M. tuberculosis strains had identical MIC90s of 0.5 μg/ml. Common mutations within the quinolone resistance-determining region (QRDR) of gyrA and/or gyrB did not confer resistance to STFX, except that double mutations of GyrA at Ala90Val and Asp94Ala were found in strains with a MIC of 1.0 μg/ml. The results indicated that STFX had potent in vitro activity against all the groups of drug-resistant M. tuberculosis strains and should be considered a new repurposed drug for treatment of multidrug-resistant and extensively drug-resistant TB.


2006 ◽  
Vol 50 (9) ◽  
pp. 3062-3069 ◽  
Author(s):  
Osamu Kamoda ◽  
Kinsei Anzai ◽  
Jun-ichi Mizoguchi ◽  
Masatoshi Shiojiri ◽  
Toshiharu Yanagi ◽  
...  

ABSTRACT Due to concerns about the current therapeutic modalities for Helicobacter pylori infection, e.g., the increased emergence of drug-resistant strains and the adverse reactions of drugs currently administered, there is a need to develop an anti-H. pylori agent with higher efficacy and less toxicity. The antibacterial activity of TG44, an anti-H. pylori agent with a novel structural formula, against 54 clinical isolates of H. pylori was examined and compared with those of amoxicillin (AMX), clarithromycin (CLR), and metronidazole (MNZ). Consequently, TG44 inhibited the growth of H. pylori in an MIC range of 0.0625 to 1 μg/ml. The MIC ranges of AMX, CLR, and MNZ were 0.0078 to 8 μg/ml, 0.0156 to 64 μg/ml, and 2 to 128 μg/ml, respectively. The antibacterial activity of TG44 against AMX-, CLR-, and MNZ-resistant strains was nearly comparable to that against drug-susceptible ones. In a pH range of 3 to 7, TG44 at 3.13 to 12.5 μg/ml exhibited potent bactericidal activity against H. pylori in the stationary phase of growth as early as 1 h after treatment began, in contrast to AMX, which showed no bactericidal activity at concentrations of up to 50 μg/ml at the same time point of treatment. TG44 at 25 μg/ml exhibited no antibacterial activity against 13 strains of aerobic bacteria, suggesting that its antibacterial activity against H. pylori is potent and highly specific. The present study indicated that TG44 possesses antibacterial activity which manifests quickly and is potentially useful for eradicating not only the antibiotic-susceptible but also the antibiotic-resistant strains of H. pylori by monotherapy.


2010 ◽  
Vol 35 (2) ◽  
pp. 208-209 ◽  
Author(s):  
Yoonkyung Park ◽  
Seong-Cheol Park ◽  
Jin-Young Kim ◽  
Jeong Ok Park ◽  
Chang Ho Seo ◽  
...  

2012 ◽  
Vol 56 (7) ◽  
pp. 3475-3480 ◽  
Author(s):  
Sovitj Pou ◽  
Rolf W. Winter ◽  
Aaron Nilsen ◽  
Jane Xu Kelly ◽  
Yuexin Li ◽  
...  

ABSTRACTSontochin was the original chloroquine replacement drug, arising from research by Hans Andersag 2 years after chloroquine (known as “resochin” at the time) had been shelved due to the mistaken perception that it was too toxic for human use. We were surprised to find that sontochin, i.e., 3-methyl-chloroquine, retains significant activity against chloroquine-resistant strains ofPlasmodium falciparum in vitro. We prepared derivatives of sontochin, “pharmachins,” with alkyl or aryl substituents at the 3 position and with alterations to the 4-position side chain to enhance activity against drug-resistant strains. Modified with an aryl substituent in the 3 position of the 7-chloro-quinoline ring, Pharmachin 203 (PH-203) exhibits low-nanomolar 50% inhibitory concentrations (IC50s) against drug-sensitive and multidrug-resistant strains andin vivoefficacy against patent infections ofPlasmodium yoeliiin mice that is superior to chloroquine. Our findings suggest that novel 3-position aryl pharmachin derivatives have the potential for use in treating drug resistant malaria.


2019 ◽  
Vol 64 (1) ◽  
Author(s):  
Lindsay J. Caverly ◽  
Theodore Spilker ◽  
Linda M. Kalikin ◽  
Terri Stillwell ◽  
Carol Young ◽  
...  

ABSTRACT We tested the in vitro activities of ceftazidime-avibactam, ceftolozane-tazobactam, meropenem-vaborbactam, piperacillin-tazobactam, and 11 other antimicrobial agents against 420 Burkholderia, Achromobacter, Stenotrophomonas, and Pandoraea strains, 89% of which were cultured from respiratory specimens from persons with cystic fibrosis. Among the β-lactam–β-lactamase inhibitor agents, meropenem-vaborbactam had the greatest activity against Burkholderia and Achromobacter, including multidrug-resistant and extensively-drug-resistant strains. None of the newer β-lactam–β-lactamase combination drugs showed increased activity compared to that of the older agents against Stenotrophomonas maltophilia or Pandoraea spp.


2020 ◽  
Vol 15 (1) ◽  
pp. 1934578X1987890
Author(s):  
Valeria Listorti ◽  
Roberta Battistini ◽  
Carlo Ercolini ◽  
Clara Tramuta ◽  
Elisabetta Razzuoli ◽  
...  

Antimicrobial resistance has become a global threat to public health. There is a critical need to find new antimicrobial substances from natural sources. The aim of this study was to investigate the antimicrobial activity of essential oils (EOs) obtained from Origanum vulgare, Thymus serpyllum, Thymus vulgaris, and Melaleuca alternifolia against multidrug resistant strains of Salmonella isolated from samples of diverse animal origin. The strains were biochemically identified, serotyped, and characterized for their antimicrobial resistance profiles. The antimicrobial activity of the EOs against the strains was evaluated using the Kirby-Bauer diffusion method, followed by determination of the minimal inhibitory concentration and minimum bactericidal concentrations. The EOs of T. serpyllum and O. vulgare, which contain carvacrol as the main compound, show excellent antimicrobial activity.


Sign in / Sign up

Export Citation Format

Share Document