scholarly journals In Vitro Activity of a Novel Antimicrobial Agent, TG44, for Treatment of Helicobacter pylori Infection

2006 ◽  
Vol 50 (9) ◽  
pp. 3062-3069 ◽  
Author(s):  
Osamu Kamoda ◽  
Kinsei Anzai ◽  
Jun-ichi Mizoguchi ◽  
Masatoshi Shiojiri ◽  
Toshiharu Yanagi ◽  
...  

ABSTRACT Due to concerns about the current therapeutic modalities for Helicobacter pylori infection, e.g., the increased emergence of drug-resistant strains and the adverse reactions of drugs currently administered, there is a need to develop an anti-H. pylori agent with higher efficacy and less toxicity. The antibacterial activity of TG44, an anti-H. pylori agent with a novel structural formula, against 54 clinical isolates of H. pylori was examined and compared with those of amoxicillin (AMX), clarithromycin (CLR), and metronidazole (MNZ). Consequently, TG44 inhibited the growth of H. pylori in an MIC range of 0.0625 to 1 μg/ml. The MIC ranges of AMX, CLR, and MNZ were 0.0078 to 8 μg/ml, 0.0156 to 64 μg/ml, and 2 to 128 μg/ml, respectively. The antibacterial activity of TG44 against AMX-, CLR-, and MNZ-resistant strains was nearly comparable to that against drug-susceptible ones. In a pH range of 3 to 7, TG44 at 3.13 to 12.5 μg/ml exhibited potent bactericidal activity against H. pylori in the stationary phase of growth as early as 1 h after treatment began, in contrast to AMX, which showed no bactericidal activity at concentrations of up to 50 μg/ml at the same time point of treatment. TG44 at 25 μg/ml exhibited no antibacterial activity against 13 strains of aerobic bacteria, suggesting that its antibacterial activity against H. pylori is potent and highly specific. The present study indicated that TG44 possesses antibacterial activity which manifests quickly and is potentially useful for eradicating not only the antibiotic-susceptible but also the antibiotic-resistant strains of H. pylori by monotherapy.

2019 ◽  
Vol 16 (4) ◽  
pp. 392-400 ◽  
Author(s):  
Göknil Pelin Coşkun ◽  
Teodora Djikic ◽  
Sadık Kalaycı ◽  
Kemal Yelekçi ◽  
Fikrettin Şahin ◽  
...  

Background:The main factor for the prolongation of the ulcer treatment in the gastrointestinal system would be Helicobacter pylori infection, which can possibly lead to gastrointestinal cancer. Triple therapy is the treatment of choice by today's standards. However, observed resistance among the bacterial strains can make the situation even worse. Therefore, there is a need to discover new targeted antibacterial therapy in order to make success in the eradication of H. pylori infections.Methods:The targeted therapy rule is to identify the related macromolecules that are responsible for the survival of the bacteria. Thus, 2-[(2',4'-difluoro-4-hydroxybiphenyl-3-yl)carbonyl]-N- (substituted)hydrazinocarbothioamide (3-13) and 5-(2',4'-difluoro-4-hydroxybiphenyl-3-yl)-4- (substituted)-2,4-dihydro-3H-1,2,4-triazole-3-thiones (14-17) were synthesized and evaluated for antibacterial activity in vitro against H. pylori.Results:All of the tested compounds showed remarkable antibacterial activity compared to the standard drugs (Ornidazole, Metronidazole, Nitrimidazin and Clarithromycin). Compounds 4 and 13 showed activity as 2µg/ml MIC value.Conclusion:In addition, we have investigated binding modes and energy of the compounds 4 and 13 on urease enzyme active by using the molecular docking tools.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Julio Benites ◽  
Héctor Toledo ◽  
Felipe Salas ◽  
Angélica Guerrero ◽  
David Rios ◽  
...  

Infection byHelicobacter pyloriincreases 10 times the risk of developing gastric cancer. Juglone, a natural occurring 1,4-naphthoquinone, preventsH. pylorigrowth by interfering with some of its critical metabolic pathways. Here, we report the design, synthesis, andin vitroevaluation of a series of juglone derivatives, namely, 2/3-phenylaminojuglones, as potentialH. pylorigrowth inhibitors. Results show that 5 out of 12 phenylaminojuglones (at 1.5 μg/mL) were 1.5–2.2-fold more active than juglone. Interestingly, most of the phenylaminojuglones (10 out of 12) were 1.1–2.8 fold more active than metronidazole, a knownH. pylorigrowth inhibitor. The most active compound, namely, 2-((3,4,5-trimethoxyphenyl)amino)-5-hydroxynaphthalene-1,4-dione 7, showed significant higher halo of growth inhibitions (HGI = 32.25 mm) to that of juglone and metronidazole (HGI = 14.50 and 11.67 mm). Structural activity relationships of the series suggest that the nature and location of the nitrogen substituents in the juglone scaffold, likely due in part to their redox potential, may influence the antibacterial activity of the series.


1996 ◽  
Vol 40 (3) ◽  
pp. 621-626 ◽  
Author(s):  
J E Sjöström ◽  
J Fryklund ◽  
T Kühler ◽  
H Larsson

Factors affecting the in vitro antibacterial activity of omeprazole were studied. Our data show that 3H-labeled omeprazole covalently bound to Helicobacter pylori and to other gram-negative and gram-positive bacteria. The compound was found to bind to a broad range of proteins in H. pylori, and at pH 5, binding was enhanced 15-fold compared with binding at pH 7. The bactericidal activity correlated to the degree of binding, and at pH 5, a pH at which omeprazole readily converts to the active sulfenamide form, beta-mercaptoethanol, a known scavenger of sulfenamide, and fetal calf serum, to which noncovalent protein binding of omeprazole is known to occur, reduced the level of binding and almost entirely abolished the bactericidal activity. At pH 7 the killing activities of omeprazole and structural analogs (e.g., proton pump inhibitors) were dependent on the time-dependent conversion (half-life) to the corresponding sulfenamide. The bactericidal activity exerted by the sulfenamide form at pH 5 was not specific for the genus Helicobacter. However, in brucella broth at pH 7 with 10% fetal calf serum, only Helicobacter spp. were susceptible to omeprazole, with MBCs in the range of 32 to 64 micrograms/ml, and MBCs for more stable proton pump inhibitors were higher. Wild-type H. pylori and its isogenic urease-deficient mutant were equally susceptible to omeprazole. Thus, the urease is not a lethal target for omeprazole action in H. pylori. In conclusion, the antibacterial activities of omeprazole and analogs are dependent on pH and the composition of the medium used. Thus, at a low pH in buffer, these compounds have a nonselective action, whereas in broth at neutral pH, the mechanism of action is selective for Helicobacter spp.


2005 ◽  
Vol 49 (7) ◽  
pp. 2822-2827 ◽  
Author(s):  
Michael R. Hamblin ◽  
Jennifer Viveiros ◽  
Changming Yang ◽  
Atosa Ahmadi ◽  
Robert A. Ganz ◽  
...  

ABSTRACT Helicobacter pylori colonizes the mucus layer of the human stomach and duodenum, causes chronic gastritis, gastric ulcer, and is a risk factor for gastric adenocarcinoma. There is a 20% failure rate in antibiotic therapy, which is increasingly due to antibiotic resistance and necessitates the search for alternative antimicrobial methods. We have discovered that H. pylori when cultured in liquid medium, accumulates significant quantities of coproporphyrin and protoporphyrin IX, both in the cells and secreted into the medium. These photoactive porphyrins lead to cell death (up to 5 logs) by photodynamic action upon illumination with low doses of visible light, with blue/violet light being most efficient. The degree of killing increases with the age of the culture and is greater than that found with Propionibacterium acnes (another bacterium known to be photosensitive due to porphyrin accumulation). Both virulent and drug-resistant strains are killed. The data suggest that phototherapy might be used to treat H. pylori infection in the human stomach.


2020 ◽  
Author(s):  
Chia-Jung Kuo ◽  
Cheng-Yu Lin ◽  
Puo-Hsien Le ◽  
Pi-Yueh Chang ◽  
Chih-Ho Lai ◽  
...  

Abstract Background: There is no current standard rescue treatment for dual drug-resistant strains of Helicobacter pylori. This aim of this study was to investigate the efficacy of rifabutin-based triple therapy for patients infected with dual drug-resistant strains to clarithromycin and levofloxacin.Methods: After two or three H. pylori treatment failures, patients underwent upper endoscopy with tissue biopsies. Phenotypic and genotypic resistance was determined using agar dilution test and polymerase chain reaction with direct sequencing, respectively. Patients infected with dual drug-resistant (clarithromycin and levofloxacin) strains and received rifabutin based triple therapy (rifabutin 150 mg bid, amoxicillin 1 g bid and esomeprazole 40 mg bid for 10 days) were enrolled. Eradication status was determined by 13C-urea breath test four weeks after treatment completion. Results: A total of 39 patients infected with dual drug-resistant strains were enrolled in this study, with a mean age of 55.9 years. The eradication rate was 79.5% (31/39). Adverse event was reported in 23.1% (9/39) of patients but mild and tolerable. In univariate analysis, no factor was identified as an independent predictor of eradication failure. Conclusions: Our current study demonstrated that rifabutin-based triple therapy was well tolerated and yielded an acceptable eradication rate for patients infected with dual drug-resistant strains of H. pylori.


2021 ◽  
Vol 8 (1) ◽  
pp. 160-165
Author(s):  
Masaaki Minami ◽  
Takafumi Ando ◽  
Hidemi Goto ◽  
Michio Ohta

Mupirocin (MUP) is an effective antibiotic against MRSA. Its bactericidal effect is stable under acid condition. By validating its antibacterial effect of Helicobacter pylori, we try to clarify MUP effect on H. pylori. The present study was conducted to investigate the effect of MUP on clarithromycin (CLR) / metronidazole (MNZ) -resistant and -susceptible strains of H. pylori, the time-kill effect of MUP, and the post antibiotic effect (PAE). We investigated the minimal inhibitory concentration (MIC) and the minimal bactericidal effect (MBC) of MUP against 140 H. pylori, which include clinical strains, ATCC43504, 26695 and J99. Ten of them were CLR -resistant strains and 3 were MNZ-resistant strains. The MIC90 and MBC of MUP on all 140 strains is 0.064 μg / ml, and 0.1 μg / ml, respectively. There were no differences of MUP effect between susceptible and resistant strains either for CLR or MNZ. Time-kill curve test and PAE test of MUP on ATCC43504 were performed. By adding MUP, time-kill curve showed that bacterial quantities decreased in dose and time-dependent manner. No viable colony was found after 12-hour culture with 0.1 μg / ml MUP. The value of PAE is 12. MUP is a potential effective antibiotic for H. pylori even those for CLR / MNZ -resistant strains.


Antibiotics ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 244
Author(s):  
Ilaria Maria Saracino ◽  
Matteo Pavoni ◽  
Laura Saccomanno ◽  
Giulia Fiorini ◽  
Valeria Pesci ◽  
...  

Treatment of Helicobacter pylori (H. pylori) infection is a challenge for clinicians. The large increase in drug-resistant strains makes the formulation of new therapeutic strategies fundamental. The frequent onset of side effects during antibiotic treatment (mainly due to intestinal dysbiosis) should not be underestimated as it may cause the interruption of treatment, failure of H. pylori eradication and clonal selection of resistant bacteria. Probiotic integration during antibiotic treatment can exert a dual function: a direct antagonistic effect on H. pylori and a balancing effect on dysbiosis. Therefore, it fulfills the definition of a new therapeutic strategy to successfully treat H. pylori infection. Data reported in literature give promising but discrepant results. Aim: To assess in vitro bacteriostatic and bactericidal activity of probiotic strains against H. pylori. Materials and methods: L. casei, L. paracasei, L. acidophilus, B. lactis and S. thermophilus strains were used. Agar well diffusion and time-kill curves were carried out to detect bacteriostatic and bactericidal activity, respectively. Results: All probiotic strains showed both bacteriostatic and bactericidal activity vs. H. pylori. Conclusions: Such findings prompted us to plan a protocol of treatment in which probiotics are given to infected patients in association with antibiotic therapy.


2001 ◽  
Vol 45 (3) ◽  
pp. 962-965 ◽  
Author(s):  
Ralf Paul ◽  
Stefan Postius ◽  
Klaus Melchers ◽  
Klaus P. Schäfer

ABSTRACT To investigate amoxicillin and metronidazole resistance ofHelicobacter pylori, we compared putative resistance genes between resistant strains obtained in vitro and their sensitive parent strain. All metronidazole-resistant strains hadrdxA mutations, and an amoxicillin-resistant strain hadpbp1 and pbp2 mutations. By transforming PCR products of these mutated genes into antibiotic-sensitive strains, we showed that rdxA null mutations were sufficient for metronidazole resistance, while pbp1mutations contributed to amoxicillin resistance of H. pylori.


Biomolecules ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 598 ◽  
Author(s):  
Hamza Olleik ◽  
Elias Baydoun ◽  
Josette Perrier ◽  
Akram Hijazi ◽  
Josette Raymond ◽  
...  

Helicobacterpylori is one of the most prevalent pathogens colonizing 50% of the world’s population and causing gastritis and gastric cancer. Even with triple and quadruple antibiotic therapies, H. pylori shows increased prevalence of resistance to conventional antibiotics and treatment failure. Due to their pore-forming activity, antimicrobial peptides (AMP) are considered as a good alternative to conventional antibiotics, particularly in the case of resistant bacteria. In this study, temporin-SHa (a frog AMP) and its analogs obtained by Gly to Ala substitutions were tested against H. pylori. Results showed differences in the antibacterial activity and toxicity of the peptides in relation to the number and position of D-Ala substitution. Temporin-SHa and its analog NST1 were identified as the best molecules, both peptides being active on clinical resistant strains, killing 90–100% of bacteria in less than 1 h and showing low to no toxicity against human gastric cells and tissue. Importantly, the presence of gastric mucins did not prevent the antibacterial effect of temporin-SHa and NST1, NST1 being in addition resistant to pepsin. Taken together, our results demonstrated that temporin-SHa and its analog NST1 could be considered as potential candidates to treat H. pylori, particularly in the case of resistant strains.


1999 ◽  
Vol 43 (7) ◽  
pp. 1788-1791 ◽  
Author(s):  
Katsuhiro Mabe ◽  
Masami Yamada ◽  
Itaro Oguni ◽  
Tsuneo Takahashi

ABSTRACT The catechin epigallocatechin gallate showed the strongest activity of the six tea catechins tested against Helicobacter pylori(MIC for 50% of the strains tested, 8 μg/ml). It had bactericidal activity at pH 7 but not at pH ≤5.0. In infected Mongolian gerbils,H. pylori was eradicated in 10 to 36% of the catechin-treated animals, with significant decreases in mucosal hemorrhage and erosion. Tea catechins, therefore, may have therapeutic effects on H. pylori infection.


Sign in / Sign up

Export Citation Format

Share Document