scholarly journals Purification and Identification of Novel Xanthine Oxidase Inhibitory Peptides Derived from Round Scad (Decapterus maruadsi) Protein Hydrolysates

Marine Drugs ◽  
2021 ◽  
Vol 19 (10) ◽  
pp. 538
Author(s):  
Xiao Hu ◽  
Ya Zhou ◽  
Shaobo Zhou ◽  
Shengjun Chen ◽  
Yanyan Wu ◽  
...  

The objective of the present study was to investigate the xanthine oxidase (XO) inhibitory effects of peptides purified and identified from round scad (Decapterus maruadsi) hydrolysates (RSHs). In this study, RSHs were obtained by using three proteases (neutrase, protamex and alcalase). Among them, the RSHs of 6-h hydrolysis by neutrase displayed the strongest XO inhibitory activity and had an abundance of small peptides (<500 Da). Four novel peptides were purified by immobilized metal affinity chromatography and identified by nano-high-performance liquid chromatography mass/mass spectrometry. Their amino acid sequences were KGFP (447.53 Da), FPSV (448.51 Da), FPFP (506.59 Da) and WPDGR (629.66 Da), respectively. Then the peptides were synthesized to evaluate their XO inhibitory activity. The results indicated that the peptides of both FPSV (5 mM) and FPFP (5 mM) exhibited higher XO inhibitory activity (22.61 ± 1.81% and 20.09 ± 2.41% respectively). Fluorescence spectra assay demonstrated that the fluorescence quenching mechanism of XO by these inhibitors (FPSV and FPFP) was a static quenching procedure. The study of inhibition kinetics suggested that the inhibition of both FPSV and FPFP was reversible, and the type of their inhibition was a mixed one. Molecular docking revealed the importance of π-π stacking between Phe residue (contained in peptides) and Phe914 (contained in the XO) in the XO inhibitory activity of the peptides.

Molecules ◽  
2020 ◽  
Vol 25 (13) ◽  
pp. 3009
Author(s):  
Jing Gao ◽  
Han Gong ◽  
Xueying Mao

Identifying DPP-IV inhibitory peptides from dietary protein has attracted increased attention. In the present study, bovine α-lactalbumin hydrolysates were generated by alcalase for various hydrolysis times, and DPP-IV inhibitory activity of these hydrolysates was determined. The 4 h hydrolysates displayed the most potent DPP-IV inhibitory activity, with DPP-IV inhibition rate of 82.30 ± 1.39% at concentration of 1.0 mg/mL. DPP-IV inhibitory peptides were isolated from the 4 h-hydrolysates with gel filtration chromatography and reversed-phase high-performance liquid chromatography (RP-HPLC). Using liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI MS/MS), two DPP-IV inhibitory peptides were identified, and their amino acid sequences were Glu-Leu-Lys-Asp-Leu-Lys-Gly-Tyr (ELKDLKGY) and Ile-Leu-Asp-Lys-Val-Gly-Ile-Asn-Tyr (ILDKVGINY), respectively. Furthermore, molecular docking analysis showed that peptides ELKDLKGY and ILDKVGINY could form hydrogen bonds, pi-cation interactions, and salt bridges with DPP-IV. These findings indicated that bovine α-lactalbumin may be a potential source of natural DPP-IV inhibitor.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Seung-Hui Song ◽  
Dae-Hun Park ◽  
Min-Suk Bae ◽  
Chul-Yung Choi ◽  
Jung-Hyun Shim ◽  
...  

Cudrania tricuspidata Bureau (Moraceae) (CT) is a dietary and medicinal plant distributed widely in Northeast Asia. There have been no studies on the effect of CT and/or its active constituents on in vivo xanthine oxidase (XO) activity, hyperuricemia, and gout. The aim of this study was to investigate XO inhibitory and antihyperuricemic effects of the ethanol extract of CT leaf (CTLE) and its active constituents in vitro and in vivo. Gas chromatography-mass spectrometry (GC-MS) and high-performance liquid chromatography (HPLC) analyses were used to determine a chemical profile of CTLE. XO inhibitory and antihyperuricemic effects of CTLE given orally (30 and 100 mg/kg per day for 1 week) were examined in potassium oxonate-induced hyperuricemic ICR mice. CTLE exhibited XO inhibitory activity in vitro with an IC50 of 368.2 μg/mL, significantly reduced serum uric acid levels by approximately 2-fold (7.9 nM in normal mice; 3.8 nM in 30 mg/kg CTLE; 3.9 nM in 100 mg/kg CTLE), and significantly alleviated hyperuricemia by reducing hepatic (by 39.1 and 41.8% in 30 and 100 mg/kg, respectively) and serum XO activity (by 30.7 and 50.1% in 30 and 100 mg/kg, respectively) in hyperuricemic mice. Moreover, several XO inhibitory and/or antihyperuricemic phytochemicals, such as stigmasterol, β-sitosterol, vitamin E, rutin, and kaempferol, were identified from CTLE. Compared with rutin, kaempferol showed markedly higher XO inhibitory activity in vitro. Our present results demonstrate that CTLE may offer a promising alternative to allopurinol for the treatment of hyperuricemia and gout.


1952 ◽  
Vol 95 (3) ◽  
pp. 277-283 ◽  
Author(s):  
Herbert R. Morgan

In various amounts and mixtures, adenine, guanine, xanthine, hypoxanthine, thymine, thymidine, cytidylic acid, and an enzymatic digest of desoxyribonucleic acid all failed to influence the inhibition by sulfadiazine of the growth of psittacosis virus (6BC) in embryonated eggs. A number of purine analogues, including benzimidazole, 2,6-diaminopurine, and 8-azaguanine, inhibited the growth of psittacosis virus (6BC) in tissue cultures at concentrations which had no obvious toxic effects on the host tissues. The virus inhibitory action of 2,6-diaminopurine was reversed by addition of adenine and that of 8-azaguanine by guanine. The growth of psittacosis virus (6BC) was inhibited by the pteridine compounds 2-ammo-4-hydroxy-6-formylpteridine and xanthopterin, while other related substances had little or no inhibitory activity. Xanthine reversed the inhibitory effects of 2-amino-4-hydroxy-6-formylpteridine. There was no correlation between the inhibitory activity of the pteridines on xanthine oxidase and multiplication of the virus.


Author(s):  
Pınar Ercan ◽  
Sedef Nehir El

Abstract. The goals of this study were to determine and evaluate the bioaccessibility of total anthocyanin and procyanidin in apple (Amasya, Malus communis), red grape (Papazkarası, Vitis vinifera) and cinnamon (Cassia, Cinnamomum) using an in vitro static digestion system based on human gastrointestinal physiologically relevant conditions. Also, in vitro inhibitory effects of these foods on lipid (lipase) and carbohydrate digestive enzymes (α-amylase and α-glucosidase) were performed with before and after digested samples using acarbose and methylumbelliferyl oleate (4MUO) as the positive control. While the highest total anthocyanin content was found in red grape (164 ± 2.51 mg/100 g), the highest procyanidin content was found in cinnamon (6432 ± 177.31 mg/100 g) (p < 0.05). The anthocyanin bioaccessibilities were found as 10.2 ± 1%, 8.23 ± 0.64%, and 8.73 ± 0.70% in apple, red grape, and cinnamon, respectively. The procyanidin bioaccessibilities of apple, red grape, and cinnamon were found as 17.57 ± 0.71%, 14.08 ± 0.74% and 18.75 ± 1.49%, respectively. The analyzed apple, red grape and cinnamon showed the inhibitory activity against α-glucosidase (IC50 544 ± 21.94, 445 ± 15.67, 1592 ± 17.58 μg/mL, respectively), α-amylase (IC50 38.4 ± 7.26, 56.1 ± 3.60, 3.54 ± 0.86 μg/mL, respectively), and lipase (IC50 52.7 ± 2.05, 581 ± 54.14, 49.6 ± 2.72 μg/mL), respectively. According to our results apple, red grape and cinnamon have potential to inhibit of lipase, α-amylase and α-glucosidase digestive enzymes.


Planta Medica ◽  
2013 ◽  
Vol 79 (13) ◽  
Author(s):  
A Ványolós ◽  
O Orbán-Gyapai ◽  
T Támadi ◽  
J Hohmann

Planta Medica ◽  
2015 ◽  
Vol 81 (16) ◽  
Author(s):  
O Roza ◽  
A Martins ◽  
J Hohmann ◽  
WC Lai ◽  
FR Chang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document