scholarly journals Enhancement of photodynamic tumor therapy effectiveness by electroporation in vitro

Medicina ◽  
2009 ◽  
Vol 45 (5) ◽  
pp. 372 ◽  
Author(s):  
Jūratė Labanauskienė ◽  
Saulius Šatkauskas ◽  
Vida Kirvelienė ◽  
Mindaugas Venslauskas ◽  
Vydmantas Atkočius ◽  
...  

The aim of our study was to determine if electroporation could improve the efficacy of photodynamic tumor therapy. A disadvantage of photodynamic therapy is a slow and in some cases insufficient accumulation of photosensitizer in tumor tissue, which could restrict the achievement of an efficient dose. Under the action of electric pulses, cells undergo membrane electroporation, which results in an increased permeability to various exogenous molecules. In this study, murine hepatoma MH22A cells were exposed to light in vitro in the presence of a photosensitizer, either chlorin e6 or aluminum phthalocyanine tetrasulfonate, following electroporation. Accumulation of the photosensitizers was registered by fluorescence microscopy. Cell viability was determined by the MTT assay. Our results demonstrate that electroporation improves an access of chlorin e6 and aluminum phthalocyanine tetrasulfonate to MH22A cells. Electroporation in combination with photosensitization significantly reduces viability of the treated cells even at low doses of photosensitizers.

2021 ◽  
Vol 17 (2) ◽  
pp. 205-215
Author(s):  
Zhenbo Sun ◽  
Mingfang Luo ◽  
Jia Li ◽  
Ailing Wang ◽  
Xucheng Sun ◽  
...  

Imaging-guided cancer theranostic is a promising strategy for cancer diagnostic and therapeutic. Photodynamic therapy (PDT), as an approved treatment modality, is limited by the poor solubility and dispersion of photosensitizers (PS) in biological fluids. Herein, it is demonstrated that superparamagnetic iron oxide (SPIO)-based nanoparticles (SCFs), prepared by conjugated with Chlorin e6 (Ce6) and modified with folic acid (FA) on the surface, can be used as versatile drug delivery vehicles for effective PDT. The nanoparticles are great carriers for photosensitizer Ce6 with an extremely high loading efficiency. In vitro fluorescence imaging and in vivo magnetic resonance imaging (MRI) results indicated that SCFs selectively accumulated in tumor cells. Under near-infrared laser irradiation, SCFs were confirmed to be capable of inducing low cell viability of RM-1 cells In vitro and displaying efficient tumor ablation with negligible side effects in tumor-bearing mice models.


Nanomaterials ◽  
2018 ◽  
Vol 9 (1) ◽  
pp. 9 ◽  
Author(s):  
Artiom Skripka ◽  
Dominyka Dapkute ◽  
Jurga Valanciunaite ◽  
Vitalijus Karabanovas ◽  
Ricardas Rotomskis

Nanomaterials have permeated various fields of scientific research, including that of biomedicine, as alternatives for disease diagnosis and therapy. Among different structures, quantum dots (QDs) have distinctive physico-chemical properties sought after in cancer research and eradication. Within the context of cancer therapy, QDs serve the role of transporters and energy donors to photodynamic therapy (PDT) drugs, extending the applicability and efficiency of classic PDT. In contrast to conventional PDT agents, QDs’ surface can be designed to promote cellular targeting and internalization, while their spectral properties enable better light harvesting and deep-tissue use. Here, we investigate the possibility of complex formation between different amphiphilic coating bearing QDs and photosensitizer chlorin e6 (Ce6). We show that complex formation dynamics are dependent on the type of coating—phospholipids or amphiphilic polymers—as well as on the surface charge of QDs. Förster’s resonant energy transfer occurred in every complex studied, confirming the possibility of indirect Ce6 excitation. Nonetheless, in vitro PDT activity was restricted only to negative charge bearing QD-Ce6 complexes, correlating with better accumulation in cancer cells. Overall, these findings help to better design such and similar complexes, as gained insights can be straightforwardly translated to other types of nanostructures—expanding the palette of possible therapeutic agents for cancer therapy.


2017 ◽  
Vol 14 (11) ◽  
pp. 3789-3800 ◽  
Author(s):  
Preeti Kumari ◽  
Shreya Jain ◽  
Balaram Ghosh ◽  
Vladimir Zorin ◽  
Swati Biswas

Cells ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 2190
Author(s):  
Howard Kim ◽  
Mi Woon Kim ◽  
Young-IL Jeong ◽  
Hoe Saeng Yang

The aim of this study was to fabricate a reactive oxygen species (ROS)-sensitive and folate-receptor-targeted nanophotosensitizer for the efficient photodynamic therapy (PDT) of cervical carcinoma cells. Chlorin e6 (Ce6) as a model photosensitizer was conjugated with succinyl β-cyclodextrin via selenocystamine linkages. Folic acid (FA)-poly(ethylene glycol) (PEG) (FA-PEG) conjugates were attached to these conjugates and then FA-PEG-succinyl β-cyclodextrin-selenocystamine-Ce6 (FAPEGbCDseseCe6) conjugates were synthesized. Nanophotosensitizers of FaPEGbCDseseCe6 conjugates were fabricated using dialysis membrane. Nanophotosensitizers showed spherical shapes with small particle sizes. They were disintegrated in the presence of hydrogen peroxide (H2O2) and particle size distribution changed from monomodal distribution pattern to multimodal pattern. The fluorescence intensity and Ce6 release rate also increased due to the increase in H2O2 concentration, indicating that the nanophotosensitizers displayed ROS sensitivity. The Ce6 uptake ratio, ROS generation and cell cytotoxicity of the nanophotosensitizers were significantly higher than those of the Ce6 itself against HeLa cells in vitro. Furthermore, the nanophotosensitizers showed folate-receptor-specific delivery capacity and phototoxicity. The intracellular delivery of nanophotosensitizers was inhibited by folate receptor blocking, indicating that they have folate-receptor specificity in vitro and in vivo. Nanophotosensitizers showed higher efficiency in inhibition of tumor growth of HeLa cells in vivo compared to Ce6 alone. These results show that nanophotosensitizers of FaPEGbCDseseCe6 conjugates are promising candidates as PDT of cervical cancer.


2009 ◽  
Vol 3 (2) ◽  
Author(s):  
M. Shenoi ◽  
E. Cressman

To overcome the limitations of existing ablation techniques, we propose a novel combinatorial approach that would utilize the thermal and chemical destructive effects of exothermic chemical reactions, such as an acid/base neutralization reaction, to treat solid tumors. Thermochemical ablation is a potential technique for percutaneous probe-based tumor therapy. It involves simultaneous intratumoral delivery of multiple reagents resulting in thermal energy released by an exothermic reaction to ablate tumor tissue with concurrent generation of a hyperosmolar byproduct that could accentuate tumor destruction. Besides the benefit of synergistic thermal and chemical effects for tumor tissue destruction, this technique is potentially highly cost-effective, easy to implement, and able to treat larger sized tumors. Our hypothesis is that thermochemical ablation can create an evenly distributed zone of coagulation in tumor tissue without systemic toxicity. A prototype device assembled using off-the-shelf components is being investigated in our lab for concurrent intraparenchymal delivery of an acid and a base. The distal portion of the multi-lumen device allows for passive mixing of the reagents before entering the tissue. The prototype device also satisfies other desirable design criteria such as rigidity to penetrate body tissue, reduced diameter, chemical stability to reagents, etc. However, the device can be improved upon by incorporating additional characteristics such as optimized imaging characteristic for real-time visualization and localization within tumor tissue, MRI compatibility, thermal insulation, improved mixing at the tip, etc. Our lab is currently working on improving the design of the infusion device as well as assessing the feasibility of the thermochemical ablation technique in vitro and in vivo. While currently being targeted conservatively for palliative therapy of unresectable or late-stage aggressive malignancies such as hepatocellular carcinoma, thermochemical ablation has potential use in the therapy of a majority of solid tumors such as breast cancer, lung cancer, prostate cancer, renal cancer, sarcomas, etc.


Sign in / Sign up

Export Citation Format

Share Document