scholarly journals Redox-Sensitive and Folate-Receptor-Mediated Targeting of Cervical Cancer Cells for Photodynamic Therapy Using Nanophotosensitizers Composed of Chlorin e6-Conjugated β-Cyclodextrin via Diselenide Linkage

Cells ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 2190
Author(s):  
Howard Kim ◽  
Mi Woon Kim ◽  
Young-IL Jeong ◽  
Hoe Saeng Yang

The aim of this study was to fabricate a reactive oxygen species (ROS)-sensitive and folate-receptor-targeted nanophotosensitizer for the efficient photodynamic therapy (PDT) of cervical carcinoma cells. Chlorin e6 (Ce6) as a model photosensitizer was conjugated with succinyl β-cyclodextrin via selenocystamine linkages. Folic acid (FA)-poly(ethylene glycol) (PEG) (FA-PEG) conjugates were attached to these conjugates and then FA-PEG-succinyl β-cyclodextrin-selenocystamine-Ce6 (FAPEGbCDseseCe6) conjugates were synthesized. Nanophotosensitizers of FaPEGbCDseseCe6 conjugates were fabricated using dialysis membrane. Nanophotosensitizers showed spherical shapes with small particle sizes. They were disintegrated in the presence of hydrogen peroxide (H2O2) and particle size distribution changed from monomodal distribution pattern to multimodal pattern. The fluorescence intensity and Ce6 release rate also increased due to the increase in H2O2 concentration, indicating that the nanophotosensitizers displayed ROS sensitivity. The Ce6 uptake ratio, ROS generation and cell cytotoxicity of the nanophotosensitizers were significantly higher than those of the Ce6 itself against HeLa cells in vitro. Furthermore, the nanophotosensitizers showed folate-receptor-specific delivery capacity and phototoxicity. The intracellular delivery of nanophotosensitizers was inhibited by folate receptor blocking, indicating that they have folate-receptor specificity in vitro and in vivo. Nanophotosensitizers showed higher efficiency in inhibition of tumor growth of HeLa cells in vivo compared to Ce6 alone. These results show that nanophotosensitizers of FaPEGbCDseseCe6 conjugates are promising candidates as PDT of cervical cancer.

2020 ◽  
Author(s):  
Xiaofei Jiang ◽  
Mingqing Shi ◽  
Miao Sui ◽  
Yizhen Yuan ◽  
Shuang Zhang ◽  
...  

Abstract Background: Cervical cancer continues to be the leading cause of cancer deaths among women worldwide. Oleanolic acid (OA) is a naturally occurring substance found in the leaves, fruits, and rhizomes of plants that has anti-cancer activity. Methods: We used tumor-bearing mice as the animal model and Hela cell as cell models. Western blot was used for detecting the expression of proteins in ferroptosis related proteins acyl-CoA synthase long-chain family member 4 (ACSL4), ferritin heavy chain (FTH1), transferrin receptor (TfR1) and glutathione peroxidase 4 (GPX4) in vivo and in vitro. MTT and EdU was for the detection of the viability of Hela cells. Results: In vivo experiments showed that OA significantly reduced the size and mass of cervical cancer tumors. In vitro experiments showed that OA significantly reduced the viability and proliferation capacity of Hela cells. In both in vivo and in vitro assays, OA increased the level of oxidative stress and Fe2+ content, and increased the expression of ferroptosis related proteins. We found high expression of ACSL4 in both xenograft models and cervical carcinoma cells. Meanwhile, knockdown of ACSL4 expression using shRNA in cervical cancer cells significantly increased cell viability and proliferation. In addition, decreased ROS levels and GPX4 were detected in ACSL4 knockdown cervical cancer cells, suggesting that ACSL4 inhibition may contribute to the reduction of ferroptosis within Hela cells and thus improve Hela cell survival. Conclusion: Promotion of ACSL4 dependent ferroptosis through OA may be an effective approach to treat cervical cancer.


Materials ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 2810
Author(s):  
Min-Suk Kook ◽  
Chang-Min Lee ◽  
Young-Il Jeong ◽  
Byung-Hoon Kim

In this study, FA–PEG3500-ss-Ce6tri copolymer was synthesized to deliver photosensitizers via redox-sensitive and folate receptor-specific manner. Folic acid (FA) was attached to amine end of poly (ethylene glycol) (PEG3500) (FA–PEG3500 conjugates) and cystamine-conjugated chlorin e6 (Ce6) (Ce6-cystamine conjugates). FA–PEG3500 was further conjugated with Ce6-cystamine to produce FA–PEG3500-ss-Ce6 conjugates. To the remaining amine end group of Ce6-cystamine conjugates, Ce6 was attached to produce FA–PEG3500-ss-Ce6tri. Nanophotosensitizers of FA–PEG3500-ss-Ce6tri copolymer were smaller than 200 nm. Their shapes were disintegrated by treatment with GSH and then Ce6 released by GSH-dependent manner. Compared to Ce6 alone, FA–PEG3500-ss-Ce6tri copolymer nanophotosensitizers recorded higher Ce6 uptake ratio, reactive oxygen species (ROS) production and cellular cytotoxicity against KB and YD-38 cells. The in vitro and in vivo study approved that delivery of nanophotosensitizers is achieved by folate receptor-sensitive manner. These results indicated that FA–PEG3500-ss-Ce6tri copolymer nanophotosensitizers are superior candidate for treatment of oral cancer.


2019 ◽  
Vol 2019 ◽  
pp. 1-18
Author(s):  
Qian-Yu Liu ◽  
Feng Ruan ◽  
Jing-Yuan Li ◽  
Li Wei ◽  
Ping Hu ◽  
...  

Human menstrual blood-derived stem cells (hMBSCs) are a novel type of mesenchymal stem cells (MSCs) that have a high proliferative rate, multilineage differentiation potential, low immunogenicity, and low oncogenicity, making them suitable candidates for regenerative medicine. The therapeutic efficacy of hMBSCs has been demonstrated in some diseases; however, their effects on cervical cancer remain unclear. In the present study, we investigated whether hMBSCs have anticancer properties on cervical cancer cells in vivo and in vitro, which has not yet been reported. In vitro, transwell coculturing experiments revealed that hMBSCs suppress the proliferation and invasion of HeLa cervical cancer cells by inducing G0/G1 cell cycle arrest. In vivo, we established a xenografted BALB/c nude mouse model by subcutaneously coinjecting HeLa cells with hMBSCs for 21 days. We found that hMBSCs significantly decrease the average volume and average weight of xenografted tumors. ELISA, TGF-β1 antibody, and recombinant human TGF-β1 (rhTGF-β1) were used to analyze whether TGF-β1 contributed to cell cycle arrest. We found that hMBSC-secreted TGF-β1 and rhTGF-β1 induced cell cycle arrest and increased the expression of phospho-JNK and phospho-P21 in HeLa cells, which was mostly reversed by TGF-β1 antibody. These results indicate that hMBSCs have antitumor properties on cervical cancer in vitro and in vivo, mediated by the TGF-β1/JNK/p21 signaling pathway. In conclusion, this study suggests that hMBSC-based therapy is promising for the treatment of cervical cancer.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Chunyang Li ◽  
Shuangqing Yang ◽  
Huaqing Ma ◽  
Mengjia Ruan ◽  
Luyan Fang ◽  
...  

Abstract Background Cervical cancer is a type of the most common gynecology tumor in women of the whole world. Accumulating data have shown that icariin (ICA), a natural compound, has anti-cancer activity in different cancers, including cervical cancer. The study aimed to reveal the antitumor effects and the possible underlying mechanism of ICA in U14 tumor-bearing mice and SiHa cells. Methods The antitumor effects of ICA were investigated in vivo and in vitro. The expression of TLR4/MyD88/NF-κB and Wnt/β-catenin signaling pathways were evaluated. Results We found that ICA significantly suppressed tumor tissue growth and SiHa cells viability in a dose-dependent manner. Also, ICA enhanced the anti-tumor humoral immunity in vivo. Moreover, ICA significantly improved the composition of the microbiota in mice models. Additionally, the results clarified that ICA significantly inhibited the migration, invasion capacity, and expression levels of TGF-β1, TNF-α, IL-6, IL-17A, IL-10 in SiHa cells. Meanwhile, ICA was revealed to promote the apoptosis of cervical cancer cells by down-regulating Ki67, survivin, Bcl-2, c-Myc, and up-regulating P16, P53, Bax levels in vivo and in vitro. For the part of mechanism exploration, we showed that ICA inhibits the inflammation, proliferation, migration, and invasion, as well as promotes apoptosis and immunity in cervical cancer through impairment of TLR4/MyD88/NF-κB and Wnt/β-catenin pathways. Conclusions Taken together, ICA could be a potential supplementary agent for cervical cancer treatment.


2011 ◽  
Vol 15 (03) ◽  
pp. 174-180 ◽  
Author(s):  
Lan Ying Wen ◽  
Su-Mi Bae ◽  
Jin Hwan Do ◽  
Kye-Shin Park ◽  
Woong Shick Ahn

Photodynamic therapy (PDT) is a promising treatment for cancer that has been recently accepted in the clinic. In this study, we examined a biological significance of PDT with a chlorin-based photosensitizer, Photodithazine, on cervical cancer model. When human papillomavirus type 16 (HPV16)- transformed mouse TC-1 cells were exposed to varied doses of Photodithazine with light irradiation (6.25 J/cm2), the significant growth inhibition of TC-1 cells was observed at 0.75 μg/mL of Photodithazine. The damaged cells by Photodithazine/PDT were categorized to be early and late apoptosis, as determined by annexin V staining. Photodithazine was primarily localized at lysosome apparatus within TC-1 cells while it was rapidly accumulated and sustained for initial 3 h in tumor tissue of TC-1 tumor bearing mice after IV injection. The tumor growth inhibition by Photodithazine/PDT with light irradiation (300 J/cm2) was examined after injection of various concentration of Photodithazine in tumor mice system. Our results show that Photodithazine/PDT might have significant advantages in the selective killing of tumor lesions in HPV 16 E6/E7 associated cervical cancer model, both in vitro and in vivo.


2017 ◽  
Vol 27 (7) ◽  
pp. 1306-1317
Author(s):  
Yen-Yun Wang ◽  
Pei-Wen Hsieh ◽  
Yuk-Kwan Chen ◽  
Stephen Chu-Sung Hu ◽  
Ya-Ling Hsu ◽  
...  

ObjectiveThe β-nitrostyrene family has been reported to possess anticancer properties. However, the anticancer activity of β-nitrostyrenes on cervical cancer cells and the underlying mechanisms involved remain unexplored. In this study, a β-nitrostyrene derivative CYT-Rx20 (3′-hydroxy-4′-methoxy-β-methyl-β-nitrostyrene) was synthesized, and its anticancer activity on cervical cancer cells and the mechanisms involved were investigated.MethodsThe effect of CYT-Rx20 on human cervical cancer cell growth was evaluated using cell viability assay. Reactive oxygen species (ROS) generation and annexin V staining were detected by flow cytometry. The protein expression levels of cleaved caspase-3, cleaved caspase-9, cleaved poly (ADPribose) polymerase, γH2AX, β-catenin, Vimentin, and Twist were measured by Western blotting. DNA double-strand breaks were determined by γ-H2AX foci formation and neutral comet assay. Migration assay was used to determine cancer cell migration. Nude mice xenograft was used to investigate the antitumor effects of CYT-Rx20 in vivo.ResultsCYT-Rx20 induced cytotoxicity in cervical cancer cells by promoting cell apoptosis via ROS generation and DNA damage. CYT-Rx20-induced cell apoptosis, ROS generation, and DNA damage were reversed by thiol antioxidants. In addition, CYT-Rx20 inhibited cervical cancer cell migration by regulating the expression of epithelial-to-mesenchymal transition markers. In nude mice, CYT-Rx20 inhibited cervical tumor growth accompanied by increased expression of DNA damage marker γH2AX and decreased expression of mesenchymal markers β-catenin and Twist.ConclusionsCYT-Rx20 inhibits cervical cancer cells in vitro and in vivo and has the potential to be further developed into an anti-cervical cancer drug clinically.


2021 ◽  
Vol 17 (2) ◽  
pp. 205-215
Author(s):  
Zhenbo Sun ◽  
Mingfang Luo ◽  
Jia Li ◽  
Ailing Wang ◽  
Xucheng Sun ◽  
...  

Imaging-guided cancer theranostic is a promising strategy for cancer diagnostic and therapeutic. Photodynamic therapy (PDT), as an approved treatment modality, is limited by the poor solubility and dispersion of photosensitizers (PS) in biological fluids. Herein, it is demonstrated that superparamagnetic iron oxide (SPIO)-based nanoparticles (SCFs), prepared by conjugated with Chlorin e6 (Ce6) and modified with folic acid (FA) on the surface, can be used as versatile drug delivery vehicles for effective PDT. The nanoparticles are great carriers for photosensitizer Ce6 with an extremely high loading efficiency. In vitro fluorescence imaging and in vivo magnetic resonance imaging (MRI) results indicated that SCFs selectively accumulated in tumor cells. Under near-infrared laser irradiation, SCFs were confirmed to be capable of inducing low cell viability of RM-1 cells In vitro and displaying efficient tumor ablation with negligible side effects in tumor-bearing mice models.


2021 ◽  
Vol 12 (4) ◽  
pp. 045006
Author(s):  
Thoko Malinga ◽  
Tukayi Kudanga ◽  
Londiwe Simphiwe Mbatha

Abstract Bimetallic nanosized delivery systems are attracting a lot of research interest as alternatives to monometallic delivery systems. This study evaluated the ability of bimetallic selenium silver chitosan pegylated folic acid targeted nanoparticles (SeAgChPEGFA NPs) to deliver doxorubicin (DOX) in cervical cancer cells. Comparison studies using monometallic selenium chitosan pegylated folic acid (SeChPEGFA NPs) targeted NPs and free DOX were also conducted. The prepared NPs and their drug nanocomplexes were characterised morphologically and physico-chemically. Drug binding and releasing studies were conducted under a simulated environment in vitro. The cytotoxicity and apoptosis studies were studied using the 3-[(4, 5-dimethylthiazol-2-yl)−2, 5-diphenyl tetrazolium bromide] (MTT) assay and the dual dye staining. The findings revealed that the bimetallic SeAgChPEGFA NPs displayed better colloidal stability, superior physico-chemical qualities, and higher binding abilities in comparison with monometallic SeChPEGFA NPs. In addition, the SeAgChPEGFA NPs showed the pH-triggered controlled drug release and cell-specific cytotoxicity. These findings suggest that the bimetallic NPs are superior delivery systems when compared to their monometallic NPs and free drug counterparts, thus, setting a platform for further in vivo examination.


Sign in / Sign up

Export Citation Format

Share Document