scholarly journals Role of Dysregulated Ion Channels in Sensory Neurons in Chronic Kidney Disease-Associated Pruritus

Medicines ◽  
2019 ◽  
Vol 6 (4) ◽  
pp. 110 ◽  
Author(s):  
Akishi Momose ◽  
Micihihiro Yabe ◽  
Shigetoshi Chiba ◽  
Kenjirou Kumakawa ◽  
Yasuo Shiraiwa ◽  
...  

Background: We investigated ion channels at the skin, including peripheral nerve endings, which serve as output machines and molecular integrators of many pruritic inputs mainly received by multiple G protein-coupled receptors (GPCRs). Methods: Based on the level of chronic kidney disease–associated pruritus (CKD-aP), subjects were divided into two groups: non-CKD-aP (no or slight pruritus; n = 12) and CKD-aP (mild, moderate, or severe pruritus; n = 11). Skin samples were obtained from the forearm or elbow during operations on arteriovenous fistulas. We measured ion channels expressed at the skin, including peripheral nerve endings by RT-PCR: Nav1.8, Kv1.4, Cav2.2, Cav3.2, BKCa, Anoctamin1, TRPV1, TRPA1, and ASIC. Results: Expression of Cav3.2, BKCa, and anoctamin1 was significantly elevated in patients with CKD-aP. On the other hand, expression of TRPV1 was significantly reduced in these patients. We observed no significant difference in the levels of Cav2.2 or ASIC between subjects with and without CKD-aP. TRPA1, Nav1.8, and Kv1.4 were not expressed. Conclusions: It was concluded that this greater difference in the expression of ion channels in the skin tissue including, specially cutaneous peripheral nerve endings in CKD patients with CKD-aP may increase generator potential related to itching.

Author(s):  
Akishi Momose ◽  
Michihiko Yabe ◽  
Shigetoshi Chiba ◽  
Kenjirou Kumakawa ◽  
Yasuo Shiraiwa ◽  
...  

Background: We investigated ion channels at the skin, including peripheral nerve endings, which serve as output machines and molecular integrators of many pruritic inputs mainly received by multiple G protein-coupled receptors (GPCRs). Methods: Based on the level of chronic kidney disease–associated pruritus (CKD-aP), subjects were divided into two groups: non-CKD-aP (no or slight pruritus; n=12) and CKD-aP (mild, moderate, or severe pruritus; n=11). Skin samples were obtained from the forearm or elbow during operations on arteriovenous fistulas. We measured ion channels expressed at the skin, including peripheral nerve endings by RT-PCR: Nav1.8, Kv1.4, Cav2.2, Cav3.2, BKCa, Anoctamin1, TRPV1, TRPA1, and ASIC. Results: Expression of Cav3.2, BKCa, and anoctamin1 was significantly elevated in patients with CKD-aP. On the other hand, expression of TRPV1 was significantly reduced in these patients. We observed no significant difference in the levels of Cav2.2 or ASIC between subjects with and without CKD-aP. TRPA1, Nav1.8,and Kv1.4 were not expressed. Conclusions: It was concluded that this greater difference in expression of ion channels at the skin tissue including specific for cutaneous peripheral nerve endings in CKD patients with CKD-aP may increase generator potential related to itching.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yuya Yoshida ◽  
Naoya Matsunaga ◽  
Takaharu Nakao ◽  
Kengo Hamamura ◽  
Hideaki Kondo ◽  
...  

AbstractDysfunction of the circadian clock has been implicated in the pathogenesis of cardiovascular disease. The CLOCK protein is a core molecular component of the circadian oscillator, so that mice with a mutated Clock gene (Clk/Clk) exhibit abnormal rhythms in numerous physiological processes. However, here we report that chronic kidney disease (CKD)-induced cardiac inflammation and fibrosis are attenuated in Clk/Clk mice even though they have high blood pressure and increased serum angiotensin II levels. A search for the underlying cause of the attenuation of heart disorder in Clk/Clk mice with 5/6 nephrectomy (5/6Nx) led to identification of the monocytic expression of G protein-coupled receptor 68 (GPR68) as a risk factor of CKD-induced inflammation and fibrosis of heart. 5/6Nx induces the expression of GPR68 in circulating monocytes via altered CLOCK activation by increasing serum levels of retinol and its binding protein (RBP4). The high-GPR68-expressing monocytes have increased potential for producing inflammatory cytokines, and their cardiac infiltration under CKD conditions exacerbates inflammation and fibrosis of heart. Serum retinol and RBP4 levels in CKD patients are also sufficient to induce the expression of GPR68 in human monocytes. Our present study reveals an uncovered role of monocytic clock genes in CKD-induced heart failure.


Objective: the present study was aimed to evaluate the role of pharmaceutical services in improving the outcome of mineral bone disorder in patients with advanced chronic kidney disease. Methodology: One hundred and twenty patients with chronic kidney disease-mineral bone disorder (CKD-MBD) screened for eligibility, seventy-six patients enrolled in the study and randomly allocated into two groups: pharmaceutical care and usual care, both groups interviewed by the pharmacist using specific questionnaire for assessing the quality of life (QoL). All the drug related problems (DRPs) including drug-drug interactions (DDIs) were recorded by the pharmacist. Blood samples were collected and utilized for analyzing the levels of vitamin D, phosphorous, calcium, albumin and parathyroid hormone at baseline and three months after. The pharmaceutical care group received all the educations about their medications and how to minimize DRPs; improve the QoL. Additionally, the pharmaceutical intervention included correcting the biochemical parameters. Results: Pharmaceutical care significantly improved patients QoL and minimized DRPs and DDIs. It was also effective in improving the biochemical parameters. Conclusion: Pharmaceutical care has a positive impact on improving the outcome of patients with CKD-MBD through attenuating DRPs, improving the biochemical parameters and the QoL.


2016 ◽  
Vol 23 (17) ◽  
pp. 1698-1707 ◽  
Author(s):  
Domenico Santoro ◽  
Vincenzo Pellicanò ◽  
Valeria Cernaro ◽  
Viviana Lacava ◽  
Antonio Lacquaniti ◽  
...  

2018 ◽  
Vol 32 (10) ◽  
pp. 5215-5226 ◽  
Author(s):  
Benjamin P. Larkin ◽  
Sarah J. Glastras ◽  
Hui Chen ◽  
Carol A. Pollock ◽  
Sonia Saad

Sign in / Sign up

Export Citation Format

Share Document