scholarly journals Membranes for Modelling Cardiac Tissue Stiffness In Vitro Based on Poly(trimethylene carbonate) and Poly(ethylene glycol) Polymers

Membranes ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 274 ◽  
Author(s):  
Iris Allijn ◽  
Marcelo Ribeiro ◽  
André Poot ◽  
Robert Passier ◽  
Dimitrios Stamatialis

Despite the increased expenditure of the pharmaceutical industry on research and development, the number of drugs for cardiovascular diseases that reaches the market is decreasing. A major issue is the limited ability of the current in vitro and experimental animal models to accurately mimic human heart disease, which hampers testing of the efficacy of potential cardiac drugs. Moreover, many non-heart-related drugs have severe adverse cardiac effects, which is a major cause of drugs’ retraction after approval. A main hurdle of current in vitro models is their inability to mimic the stiffness of in vivo cardiac tissue. For instance, poly(styrene) petri dishes, which are often used in these models, have a Young’s modulus in the order of GPa, while the stiffness of healthy human heart tissue is <50 kPa. In pathological conditions, such as scarring and fibrosis, the stiffness of heart tissue is in the >100 kPa range. In this study, we focus on developing new membranes, with a set of properties for mimicry of cardiac tissue stiffness in vitro, based on methacrylate-functionalized macromers and triblock-copolymers of poly(trimethylene carbonate) and poly(ethylene glycol). The new membranes have Young’s moduli in the hydrated state ranging from 18 kPa (healthy tissue) to 2.5 MPa (pathological tissue), and are suitable for cell contraction studies using human pluripotent stem-cell-derived cardiomyocytes. The membranes with higher hydrophilicity have low drug adsorption and low Young’s moduli and could be suitable for drug screening applications.

Pharmaceutics ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 605
Author(s):  
Marie-Emérentienne Cagnon ◽  
Silvio Curia ◽  
Juliette Serindoux ◽  
Jean-Manuel Cros ◽  
Feifei Ng ◽  
...  

This article describes the utilization of (methoxy)poly(ethylene glycol)-b-poly(1,3-trimethylene carbonate) ((m)PEG–PTMC) diblock and triblock copolymers for the formulation of in situ forming depot long-acting injectables by solvent exchange. The results shown in this manuscript demonstrate that it is possible to achieve long-term drug deliveries from suspension formulations prepared with these copolymers, with release durations up to several months in vitro. The utilization of copolymers with different PEG and PTMC molecular weights affords to modulate the release profile and duration. A pharmacokinetic study in rats with meloxicam confirmed the feasibility of achieving at least 28 days of sustained delivery by using this technology while showing good local tolerability in the subcutaneous environment. The characterization of the depots at the end of the in vivo study suggests that the rapid phase exchange upon administration and the surface erosion of the resulting depots are driving the delivery kinetics from suspension formulations. Due to the widely accepted utilization of meloxicam as an analgesic drug for animal care, the results shown in this article are of special interest for the development of veterinary products aiming at a very long-term sustained delivery of this therapeutic molecule.


Molecules ◽  
2021 ◽  
Vol 26 (5) ◽  
pp. 1438
Author(s):  
Silvio Curia ◽  
Feifei Ng ◽  
Marie-Emérentienne Cagnon ◽  
Victor Nicoulin ◽  
Adolfo Lopez-Noriega

This article presents the evaluation of diblock and triblock poly(ethylene glycol)-b-poly(1,3-trimethylene carbonate) amphiphilic copolymers (PEG-PTMCs) as excipients for the formulation of long-acting injectables (LAIs). Copolymers were successfully synthesised through bulk ring-opening polymerisation. The concomitant formation of PTMC homopolymer could not be avoided irrespective of the catalyst amount, but the by-product could easily be removed by gel chromatography. Pure PEG-PTMCs undergo faster erosion in vivo than their corresponding homopolymer. Furthermore, these copolymers show outstanding stability compared to their polyester analogues when formulated with amine-containing reactive drugs, which makes them particularly suitable as LAIs for the sustained release of drugs susceptible to acylation.


2004 ◽  
Vol 5 (1) ◽  
pp. 5-10 ◽  
Author(s):  
Johnna S. Temenoff ◽  
Hansoo Park ◽  
Esmaiel Jabbari ◽  
Daniel E. Conway ◽  
Tiffany L. Sheffield ◽  
...  

2018 ◽  
Vol 47 (3) ◽  
pp. 426-432 ◽  
Author(s):  
Sivan Yogev ◽  
Ayelet Shabtay-Orbach ◽  
Abraham Nyska ◽  
Boaz Mizrahi

Thermoresponsive materials have the ability to respond to a small change in temperature—a property that makes them useful in a wide range of applications and medical devices. Although very promising, there is only little conclusive data about the cytotoxicity and tissue toxicity of these materials. This work studied the biocompatibility of three Food and Drug Administration approved thermoresponsive polymers: poly( N-isopropyl acrylamide), poly(ethylene glycol)-poly(propylene glycol)-poly(ethylene glycol) tri-block copolymer, and poly(lactic acid-co-glycolic acid) and poly(ethylene glycol) tri-block copolymer. Fibroblast NIH 3T3 and HaCaT keratinocyte cells were used for the cytotoxicity testing and a mouse model for the in vivo evaluation. In vivo results generally showed similar trends as the results seen in vitro, with all tested materials presenting a satisfactory biocompatibility in vivo. pNIPAM, however, showed the highest toxicity both in vitro and in vivo, which was explained by the release of harmful monomers and impurities. More data focusing on the biocompatibility of novel thermoresponsive biomaterials will facilitate the use of existing and future medical devices.


Sign in / Sign up

Export Citation Format

Share Document