scholarly journals Effective H2 Separation through Electroless Pore-Plated Pd Membranes Containing Graphite Lead Barriers

Membranes ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 410
Author(s):  
David Martinez-Diaz ◽  
Raúl Sanz ◽  
Alicia Carrero ◽  
José Antonio Calles ◽  
David Alique

Hydrogen promotion as a clean energy vector could provide an efficient strategy for realizing real decarbonization of the current energy system. Purification steps are usually required in most H2-production processes, providing the use of Pd-based membranes, particularly those supported on porous stainless steel (PSS), important advantages against other alternatives. In this work, new composite membranes were prepared by modifying PSS supports with graphite, as an intermediate layer, before incorporating a palladium film by electroless pore-plating. Fully dense Pd layers were reached, with an estimated thickness of around 17 μm. Permeation measurements were carried out in two different modes: H2 permeation from the inner to the outer side of the membrane (in–out) and in the opposite way (out–in). H2 permeances between 3.24 × 10−4 and 4.33 × 10−4 mol m−2 s−1 Pa−0.5 with αH2/N2 ≥ 10,000 were reached at 350–450 °C when permeating from the outer to the inner surface. Despite a general linear trend between permeating H2 fluxes and pressures, the predicted intercept in (0,0) by the Sieverts’ law was missed due to the partial Pd infiltration inside the pores. H2-permeances progressively decreased up to around 33% for binary H2–N2 mixtures containing 40 vol% N2 due to concentration–polarization phenomena. Finally, the good performance of these membranes was maintained after reversing the direction of the permeate flux. This fact practically demonstrates an adequate mechanical resistance despite generating tensile stress on the Pd layer during operation, which is not accomplished in other Pd membranes.

2021 ◽  
pp. 125808
Author(s):  
Saber Arabi-Nowdeh ◽  
Shohreh Nasri ◽  
Parvin Barat Saftjani ◽  
Amirreza Naderipour ◽  
Zulkurnain Abdul-Malek ◽  
...  

Nanoscale ◽  
2021 ◽  
Author(s):  
Xianyun Peng ◽  
Junrong Hou ◽  
Yuying Mi ◽  
Jiaqiang Sun ◽  
Gaocan Qi ◽  
...  

Electrocatalytic hydrogen evolution reaction (HER) for H2 production is essential for future renewable and clean energy technology. Screening energy-saving, low-cost, and highly active catalysts efficiently, however, is still a grand...


2020 ◽  
Vol 13 (1) ◽  
pp. 265
Author(s):  
Mine Isik ◽  
P. Ozge Kaplan

A thorough understanding of the drivers that affect the emission levels from electricity generation, support sound design and the implementation of further emission reduction goals are presented here. For instance, New York State has already committed a transition to 100% clean energy by 2040. This paper identifies the relationships among driving factors and the changes in emissions levels between 1990 and 2050 using the logarithmic mean divisia index analysis. The analysis relies on historical data and outputs from techno-economic-energy system modeling to elucidate future power sector pathways. Three scenarios, including a business-as-usual scenario and two policy scenarios, explore the changes in utility structure, efficiency, fuel type, generation, and emission factors, considering the non-fossil-based technology options and air regulations. We present retrospective and prospective analysis of carbon dioxide, sulfur dioxide, nitrogen oxide emissions for the New York State’s power sector. Based on our findings, although the intensity varies by period and emission type, in aggregate, fossil fuel mix change can be defined as the main contributor to reduce emissions. Electricity generation level variations and technical efficiency have relatively smaller impacts. We also observe that increased emissions due to nuclear phase-out will be avoided by the onshore and offshore wind with a lower fraction met by solar until 2050.


2019 ◽  
Vol 113 ◽  
pp. 02017
Author(s):  
Mariagiovanna Minutillo ◽  
Alessandra Perna ◽  
Alessandro Sorce

This paper focuses on a biofuel-based Multi-Energy System generating electricity, heat and hydrogen. The proposed system, that is conceived as refit option for an existing anaerobic digester plant in which the biomass is converted to biogas, consists of: i) a fuel processing unit, ii) a power production unit based on the SOFC (Solid Oxide Fuel Cell) technology, iii) a hydrogen separation, compression and storage unit. The aim of this study is to define the operating conditions that allow optimizing the plant performances by applying the exergy analysis that is an appropriate technique to assess and rank the irreversibility sources in energy processes. Thus, the exergy analysis has been performed for both the overall plant and main plant components and the main contributors to the overall losses have been evaluated. Moreover, the first principle efficiency and the second principle efficiency have been estimated. Results have highlighted that the fuel processor (the Auto-Thermal Reforming reactor) is the main contributor to the global exergy destruction (9.74% of the input biogas exergy). In terms of overall system performance the plant has an exergetic efficiency of 53.1% (it is equal to 37.7% for the H2 production).


MRS Bulletin ◽  
1999 ◽  
Vol 24 (11) ◽  
pp. 40-44 ◽  
Author(s):  
R.B. Schwarz

Magnesium can reversibly store about 7.7 wt% hydrogen, equivalent to more than twice the density of liquid hydrogen. This high storage capacity, coupled with a low price, suggests that magnesium and magnesium alloys could be advantageous for use in battery electrodes and gaseous-hydrogen storage systems. The use of a hydrogen-storage medium based on magnesium, combined with a fuel cell to convert the hydrogen into electrical energy, is an attractive proposition for a clean transportation system. However, the advent of such a system will require further research into magnesium-based alloys that form less stable hydrides and proton-conducting membranes that can raise the operating temperature of the current fuel cells.Following the U.S. oil crisis of 1974, research into alternative energy-storage and distribution systems was vigorously pursued. The controlled oxidation of hydrogen to form water was proposed as a clean energy system, creating a need for light and safe hydrogen-storage media. Extensive research was done on inter-metallic alloys, which can store hydrogen at densities of about 1500 cm3-H2 gas/ cm3-hydride, higher than the storage density achieved in liquid hydrogen (784 cm3/cm3 at –273°C) or in pressure tanks (˜200 cm3/cm3 at 200 atm). The interest in metal hydrides accelerated following the development of portable electronic devices (video cameras, cellular phones, laptop computers, tools, etc.), which created a consumer market for compact, rechargeable batteries. Initially, nickel-cadmium batteries fulfilled this need, but their relatively low energy density and the toxicity of cadmium helped to drive the development of higher-energy-density, less toxic, rechargeable batteries.


Membranes ◽  
2018 ◽  
Vol 8 (4) ◽  
pp. 124 ◽  
Author(s):  
Andreia S.L. Gouveia ◽  
Lucas Ventaja ◽  
Liliana C. Tomé ◽  
Isabel M. Marrucho

Considering the high potential of hydrogen (H2) as a clean energy carrier, the implementation of high performance and cost-effective biohydrogen (bioH2) purification techniques is of vital importance, particularly in fuel cell applications. As membrane technology is a potentially energy-saving solution to obtain high-quality biohydrogen, the most promising poly(ionic liquid) (PIL)–ionic liquid (IL) composite membranes that had previously been studied by our group for CO2/N2 separation, containing pyrrolidinium-based PILs with fluorinated or cyano-functionalized anions, were chosen as the starting point to explore the potential of PIL–IL membranes for CO2/H2 separation. The CO2 and H2 permeation properties at the typical conditions of biohydrogen production (T = 308 K and 100 kPa of feed pressure) were measured and discussed. PIL–IL composites prepared with the [C(CN)3]− anion showed higher CO2/H2 selectivity than those containing the [NTf2]− anion. All the membranes revealed CO2/H2 separation performances above the upper bound for this specific separation, highlighting the composite incorporating 60 wt% of [C2mim][C(CN)3] IL.


Author(s):  
Hu Huang ◽  
Jian-Song Zhang ◽  
Weiling Luan ◽  
Shan-Tung Tu ◽  
Shang-Kuo Yang

TE (Thermoelectric) materials have been widely used in clean energy system as low-power generator and Peliter cooler, due to its salient features of being compact, light-weighted, noiseless in operation, highly reliable, and environment friendly. Recently, another application has been explored on TE materials as gas sensors based on Seebeck effect and exothermic reaction of hydrogen oxidation on catalyst. In this paper, a TE hydrogen gas sensor with a simple structure, low energy consumption and a high sensitivity was reported. Bi-Te (bismuth telluride) with a high Seebeck coefficient at room-temperature was deposited onto thin glass substrates by RF magnetron sputtering technology. Four pairs of PN film couples were connected in series to improve the output voltage. Pt/ ACC (Activated Carbon Fiber Cloth) was mounted at the joint of PN couples, acting as catalyst so as to accelerate the oxidation of hydrogen. The influences of reduction temperature and Pt content on the generated temperature difference were investigated. The voltage output and selectivity to combustible gas mixture were measured. Experimental results showed that when exposed to 3vol% H2/ air, as-prepared sensor gave out a high output signal of 33.1mV, and the response time was about 50s with recovery time of 50s.


Author(s):  
Andreia S.L. Gouveia ◽  
Lucas Ventaja ◽  
Liliana C. Tome ◽  
Isabel M. Marrucho

Considering the high potential of hydrogen (H2) as a clean energy carrier, the implementation of high performance and cost-effective biohydrogen (bioH2) purification techniques is of vital importance, particularly in fuel cell applications. In this context, membrane technology is a potentially energy-saving solution to obtain high-quality biohydrogen. The most promising poly(ionic liquid) (PIL) - ionic liquid (IL) composite membranes previously studied by our group for CO2/N2 separation, containing pyrrolidinium-based PILs with fluorinated or cyano-functionalized anions, were chosen as starting point to explore the potential of PIL–IL membranes for CO2/H2 separation. The CO2 and H2 permeation properties at the typical conditions of biohydrogen production (T =308 K and 100 kPa of feed pressure) were measured and discussed. PIL–IL composites prepared with [C(CN)3]– anion showed higher CO2/H2 selectivities and H2 diffusivities compared to those containing [NTf2]– anion. All the membranes revealed CO2/H2 separation performances above the upper bound for this specific separation, highlighting the composite incorporating 60 wt% of [C2mim][C(CN)3] IL.


2018 ◽  
Vol 22 ◽  
pp. 255-263 ◽  
Author(s):  
Pantelis Capros ◽  
Maria Kannavou ◽  
Stavroula Evangelopoulou ◽  
Apostolos Petropoulos ◽  
Pelopidas Siskos ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document