scholarly journals Preparation of Ultrafine-Grained Continuous Chips by Cryogenic Large Strain Machining

Metals ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 398
Author(s):  
Haitao Chen ◽  
Baoyu Zhang ◽  
Jiayang Zhang ◽  
Wenjun Deng

Conventional orthogonal machining is an effective severe plastic deformation (SPD) method to fabricate ultrafine-grained (UFG) materials. However, UFG materials produced by room temperature-free machining (RT-FM) are prone to dynamic recovery, which decreases the mechanical properties of UFG materials. In this study, the cryogenic orthogonal machining technique was implemented to fabricate chips that have an abundant UFG microstructure. Solution-treated Al-7075 bulk has been processed in cryogenic temperature (CT) and room temperature (RT) with various machining parameters, respectively. The microstructure, chip morphology and mechanical properties of CT and RT samples have been investigated. CT samples can reach a microhardness of 167.46 Hv, and the hardness of CT samples is higher than that of the corresponding RT samples among all parameters, with an average difference of 5.62 Hv. Piecemeal chip obtained under RT has cracks on its free surface, and elevated temperature aggravates crack growth, whereas all CT samples possess smoother surfaces and continuous shape. CT suppresses dynamic recovery effectively to form a heavier deformation microstructure, and with a higher dislocation density in CT samples, they further improve the chips’ hardness. Also, CT inhibits the formation of solute cluster and precipitation to enhance the formability of material, so that continuous chips are formed.

2006 ◽  
Vol 503-504 ◽  
pp. 31-36 ◽  
Author(s):  
Johannes Mueller ◽  
Karsten Durst ◽  
Dorothea Amberger ◽  
Matthias Göken

The mechanical properties of ultrafine-grained metals processed by equal channel angular pressing is investigated by nanoindentations in comparison with measurements on nanocrystalline nickel with a grain size between 20 and 400 nm produced by pulsed electrodeposition. Besides hardness and Young’s modulus measurements, the nanoindentation method allows also controlled experiments on the strain rate sensitivity, which are discussed in detail in this paper. Nanoindentation measurements can be performed at indentation strain rates between 10-3 s-1 and 0.1 s-1. Nanocrystalline and ultrafine-grained fcc metals as Al and Ni show a significant strain rate sensitivity at room temperature in comparison with conventional grain sized materials. In ultrafine-grained bcc Fe the strain rate sensitivity does not change significantly after severe plastic deformation. Inelastic effects are found during repeated unloading-loading experiments in nanoindentations.


2007 ◽  
Vol 26-28 ◽  
pp. 381-384 ◽  
Author(s):  
Zhi Guo Fan ◽  
Chao Ying Xie

Ultrafine-grained (UFG) CP Ti were successfully prepared by Equal Channel Angular Extrusion (ECAE) at 390°C~400°C, small than 0.5 um in size. The compressive tests for coarse grain (CG) and UFG Ti were carried out at room temperature (RT) and 77K. UFG Ti showed excellent ductility and higher strength than CG Ti at RT and 77 K. The strain hardening of UFG Ti was improved at 77 K. The compressive ultimate strengths of CG Ti and UFG Ti were both enhanced as the strain rate increased, but CG Ti showed more obvious temperature and strain rate dependence of flow stress, comparing with UFG Ti. When the strain rate increased to 1×10-1/s, the compressive ultimate strength of UFG Ti was kept almost constant, while the ultimate strength of CG Ti increased to the strength level of UFG Ti.


2009 ◽  
Vol 79-82 ◽  
pp. 377-380
Author(s):  
Hong Yun Zhao ◽  
Guo Dong Wang ◽  
Chun Hua Xu ◽  
Feng Yuan Shu

After reheated at different temperatures for 5 minutes, the 400MPa Ultrafine Grained Steel specimens were air-cooled to room temperature, and then carried out the mechanical nanocrystallization surface treatment and structure performance testing. On the basis of comparing the test results on the specimens before and after the mechanical nanocrystallization surface treatment, the process of mechanical nanocrystallization was analyzed briefly. The results show that: as the reheating temperature rising, the trend of grain size growing increases markedly, and the mechanical properties also drop down to different degrees; when the reheating temperature is around 800°C, because of the pearlite spheroidized significantly, its mechanical properties drop the most seriously; after the mechanical nanocrystallization surface treatment, not only its surface form a layer of fine nano-layer (about 100 nm) structure, but also its mechanical properties rise obviously, and the yield strength is over 450MPa.


2010 ◽  
Vol 638-642 ◽  
pp. 1952-1958 ◽  
Author(s):  
Rustam Kaibyshev ◽  
Elena Avtokratova ◽  
O.S. Sitdikov

Effect of intense plastic straining on rollability and service properties of an Al-6%Mg-0.3%Sc alloy was examined. Ultrafine-grained structure (UFG) was produced by equal-channel angular pressing (ECAP) to a strain of 8 at a temperature of 325oC. The formation of UFG structure resulted in increase in the yield stress from 223 MPa to 285 MPa and ultimate stress from 350 MPa to 389 MPa in comparison with initial hot extruded condition. Total elongation slightly decreased from 33% to 29%. After ECAP, the material was subjected to cold and isothermal warm rolling. The formation of UFG structure resulted in enhanced rollability of the present alloy at room temperature. Cold rolling with high reduction provides the development of heavily deformed microstructure with high dislocation density, while the isothermal warm rolling does not remarkably affect the microstructure produced by ECAP. The mechanical properties after ECAP and ECAP with subsequent isothermal rolling were roughly similar. In contrast, cold rolling to the same strain resulted in significant increase of yield stress (495 MPa) and ultimate stress (536 MPa). Total elongation attained was 13%.


2018 ◽  
Vol 33 (20) ◽  
pp. 3449-3457 ◽  
Author(s):  
Xiaolong Yin ◽  
Yunyun Pi ◽  
Di He ◽  
Jiayang Zhang ◽  
Wenjun Deng

Abstract


2012 ◽  
Vol 629 ◽  
pp. 198-202 ◽  
Author(s):  
Ping Yang ◽  
Kai Huai Yang

Three groups of commercial 1050 Al alloy were subjected to equal channel angular pressing (ECAP) at room temperature using route A, route C and route Bc, respectively. Mechanical properties and fracture modes of as-annealed and ECAPed samples were investigated. The microhardness of 1050 Al fabricated by ECAP increases by a factor of about 1.5 compared to the as-annealed state. The ultimate tensile strength (UTS) increases significantly after ECAP, while the elongation decreases. But they are strongly dependence on the number of ECAP passes and the pressing route. The UTS and elongation of the samples processed by route Bc are best, consequently, the static toughness U of the samples is enhanced. Besides, all specimens subjected to ECAP deformation failed in a ductile manner.


2008 ◽  
Vol 584-586 ◽  
pp. 176-181
Author(s):  
N.F. Yunusova ◽  
Rinat K. Islamgaliev ◽  
I.F. Safiullin ◽  
Ruslan Valiev

Microstructure and mechanical properties of the ultrafine-grained (UFG) 1421 aluminum alloy processed by equal channel angular pressing (ECAP) have been studied. This UFG material was successfully rolled under the conditions of superplasticity. It was established that the rolled material exhibited not only the enhanced superplasticity, but also high strength retaining initial ductility at room temperature after additional short-term annealing and low-temperature aging.


2008 ◽  
Vol 584-586 ◽  
pp. 734-740 ◽  
Author(s):  
Sushanta Kumar Panigrahi ◽  
R. Jayaganthan

The mechanical properties and microstructural characteristics of a precipitation hardenable Al 7075 alloy subjected to rolling at liquid nitrogen temperature and room temperature are reported in this present work. The Al 7075 alloy was severely rolled at cryogenic temperature and room temperature and its mechanical properties were studied by using tensile tests and hardness. The microstructural characterization of Al 7075 alloy were made using SEM/EBSD, TEM and DSC. The cryorolled Al 7075 alloys have shown improved mechanical properties as compared to the room temperature rolled Al alloy. The cryorolled Al alloy after 90% thickness reduction exhibits ultrafine grain structure as observed from its TEM micrographs. It is observed that the strength and hardness of the cryorolled materials (CR) at different percentage of thickness reductions are higher as compared to the room temperature rolled (RTR) materials at the same strain due to suppression of dynamic recovery and accumulation of higher dislocations density in the CR materials.


Sign in / Sign up

Export Citation Format

Share Document