scholarly journals Optimizing Heat Treatment Parameters for the W-Temper Forming of 7xxx Series Aluminum Alloys

Metals ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1361
Author(s):  
Shreyas Hebbar ◽  
Lukas Kertsch ◽  
Alexander Butz

A major challenge in processing 7xxx series aluminum alloys is their limited formability at room temperature. In this paper, for the alloys EN AW-7020 and EN AW-7075, various variants of the W-temper forming process are investigated. For both alloys, a good cold formability and a high strength after aging can be achieved. The effects of solution heat treatment or retrogression temperature and holding time, as well as the influence of plastic deformation after quenching, were studied. For various combinations of process parameters, the formability of the as-quenched materials and the hardening performance during artificial aging were examined. For this, hardness measurements and differential scanning calorimetry (DSC) experiments were performed along the entire process chain, to reveal the development of the hardening precipitates. After solution heat treatment and quenching, the yield stress and hardness of both investigated alloys were drastically reduced in comparison to their initial T6 states, while the ductility was significantly increased. By a subsequent simple artificial aging treatment, the same hardness as in the T6 state could be restored. It was observed that plastic deformation immediately after quenching significantly decreased the artificial aging time to achieve the peak hardness. Besides the conventional solution heat treatment process, an alternative retrogression and re-aging procedure was identified for the alloy EN AW-7020. While the heat treatment temperature can be reduced as compared to the conventional solution heat treatment, the formability and hardenability are equally good. In contrast, no such alternative process could be identified for the alloy EN AW-7075.

Metals ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 1276
Author(s):  
Eva Anne Mørtsell ◽  
Ida Westermann ◽  
Calin Daniel Marioara ◽  
Ketill Olav Pedersen ◽  
Sigmund Jarle Andersen ◽  
...  

Al–Mg–Si alloys are usually formed into their final shape by rolling or extrusion. After extrusion, the aluminium profiles are usually straightened, causing the material to be subjected to a small plastic deformation. This study demonstrates the positive effect on strength that can be obtained from such small deformation levels or from only elastically straining the material. Elastic straining of a lean Al–Mg–Si alloy, when performed immediately after solution heat treatment, enhances the material yield strength after artificial ageing to T6. Transmission electron microscopy shows that this effect can be attributed to a higher number density and finer dispersion of the age-hardening precipitate needles. Furthermore, introducing a small plastic deformation of 1% after solution heat treatment results in a comparable strength increase to elastically straining the material. In this case, however, the strength increase is due to the increased dislocation density, which compensates for a lower density of precipitate needles. Finally, by combining plastic deformation with a succeeding elastic strain, we demonstrate how elastic strain can cause an on-set of dislocation cell formation in this material.


2011 ◽  
Vol 399-401 ◽  
pp. 17-20
Author(s):  
Wen Bin Yu ◽  
Zhi Qian Chen ◽  
Mang Zhang ◽  
Zhou Yu

The precipitation hardening response of as-cast Mg-8Yb-0.5Zr magnesium alloy was investigated in the present work. The microstructure evolution of the alloy illustrated that Mg2Yb intermetallic phase was dissolved by solution heat treatment at 520°C for 12 hours. An apparent precipitation hardening response in Mg-8Yb-0.5Zr was discovered after artificial aging at 150°C, with maximum hardness increment of about 80 percent at the peak condition. It was found that the precipitates of the alloy were in the shape of two conjoined cosh and globe about 50 nm, and precipitated preferentially on grain boundaries and dislocations.


Metals ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 173 ◽  
Author(s):  
Xin He ◽  
Qinglin Pan ◽  
Hang Li ◽  
Zhiqi Huang ◽  
Shuhui Liu ◽  
...  

Three different aging treatments including single-aging, delayed-aging, and pre-aging were carried out on 6082 extruded profiles after solution heat treatment, then their hardness, tensile strength, and microstructure were tested. The experimental results reveal that the properties and microstructure changes during single-aging. Based on this, the negative effects of room temperature delay and the results of short-term pre-aging treatments used in the experiment to improve this phenomenon have been concluded.


2019 ◽  
Vol 25 (3) ◽  
pp. 281-285
Author(s):  
Dhanashekar MANICKAM ◽  
Senthil Kumar VELUKKUDI SANTHANAM

Aluminium alloys are subjected to heat treatment to increase the strength and corrosion properties. This paper aims to study the effect of heat treatment on the compression behaviour of A356 alloy under quasi static condition and barreling effect. The various heat treatments are: (i) solution heat treatment of 1 h at 540 °C + natural aging 0 h + artificial aging at 180 °C up to 5.5 h, (ii) solution heat treatment of 3 h at 540 °C + natural aging for 20 h + artificial aging at 180 °C up to 5.5 h, and (iii) solution heat treatment of 6 h at 540 °C + natural aging for 20 h + artificial aging at 180 °C up to 5.5 h. Specially to understand the influence of artificial aging at every 0.5 h up to 5.5 h, the specimens were heat treated. From the results, solutionizing for 1 hr have a better compression strength irrespective of the artificial aging. Natural aging had decreased the ductility but increased the strength property. Artificial aging had a significant effect on the compressive strength and peak strength were obtained at 4 h irrespective of solutionizing heat treatment. Compressive strength increased by 33 % for 1 h of solutionizing and 4 h of artificial aged specimen when compared to non-heat treated alloy. Two mathematical relations discussed in literature were used for calculating the radius of the barreled surface followed by validation. DOI: http://dx.doi.org/10.5755/j01.ms.25.3.20442


2022 ◽  
Vol 327 ◽  
pp. 189-196
Author(s):  
Le Cheng ◽  
Hong Xing Lu ◽  
Min Luo ◽  
Xing Gang Li ◽  
Wan Peng Zhang ◽  
...  

The evolution of the microstructure of A356.2 alloys prepared by the rheocasting and squeeze casting during solution heat treatment was investigated. In contrast with the conventional solution heat treatment process (3 hours at 540oC), a short time solution treatment process (less than 1 hour at 540oC) is applied in this paper. The results show that the rheocastings require a shorter solution time than the squeeze-castings to obtain spheroidized Si particles. After solution for 10 min, the X-ray diffraction inspection results show that the Mg2Si phase completely is dissolved in both rheocastings and squeeze-castings. However, a small amount of Mg2Si is found at the edge of the Si particle by scanning electron microscope observation. After solution for more than 20 min, the Mg2Si phase is completely dissolved. Fe-rich phases, including AlSiFeMg and AlFeSi, exist throughout the solution process. The developed T6 heat treatment with a short solution time can effectively improve production efficiency and decrease process cost for the rheocasting process. Key words: A356.2 alloy, microstructure, short solution time, rheocasting, squeeze casting


Sign in / Sign up

Export Citation Format

Share Document