scholarly journals A RE Methodology to achieve Accurate Polygon Models and NURBS Surfaces by Applying Different Data Processing Techniques

Metals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1508
Author(s):  
Alejandro Pascual ◽  
Naiara Ortega ◽  
Soraya Plaza ◽  
Ibon Holgado ◽  
Jon Iñaki Arrizubieta

The scope of this work is to present a reverse engineering (RE) methodology to achieve accurate polygon models for 3D printing or additive manufacturing (AM) applications, as well as NURBS (Non-Uniform Rational B-Splines) surfaces for advanced machining processes. The accuracy of the 3D models generated by this RE process depends on the data acquisition system, the scanning conditions and the data processing techniques. To carry out this study, workpieces of different material and geometry were selected, using X-ray computed tomography (XRCT) and a Laser Scanner (LS) as data acquisition systems for scanning purposes. Once this is done, this work focuses on the data processing step in order to assess the accuracy of applying different processing techniques. Special attention is given to the XRCT data processing step. For that reason, the models generated from the LS point clouds processing step were utilized as a reference to perform the deviation analysis. Nonetheless, the proposed methodology could be applied for both data inputs: 2D cross-sectional images and point clouds. Finally, the target outputs of this data processing chain were evaluated due to their own reverse engineering applications, highlighting the promising future of the proposed methodology.

2011 ◽  
Vol 10 (1) ◽  
pp. 37-43 ◽  
Author(s):  
Enkhbayar Altantsetseg ◽  
Yuta Muraki ◽  
Fumito Chiba ◽  
Kouichi Konno

In this paper, we present a whole procedure for constructing 3D models of stone tools including scanning, data acquisition and surface reconstruction with hole-filling. The process of scanning hundreds or thousands of small objects is time consuming. Our original 3D laser scanner optimizes the scanning process and reduces time significantly by four directional scanning of many small objects simultaneously. To reconstruct surface of stone tools, the scanned point clouds are processed with a new triangulation method that preserves the properties of sharp edges. Our approach is based on a projection based method in which points are distinguished into neighboring layers with a point cloud slicing method to be individually reconstructed. In addition, we introduce a simple hole-filling algorithm for mesh completion of models. The main advantages of our approach are speed and efficiency for reconstruction of many small objects.


Author(s):  
F. Tsai ◽  
T.-S. Wu ◽  
I.-C. Lee ◽  
H. Chang ◽  
A. Y. S. Su

This paper presents a data acquisition system consisting of multiple RGB-D sensors and digital single-lens reflex (DSLR) cameras. A systematic data processing procedure for integrating these two kinds of devices to generate three-dimensional point clouds of indoor environments is also developed and described. In the developed system, DSLR cameras are used to bridge the Kinects and provide a more accurate ray intersection condition, which takes advantage of the higher resolution and image quality of the DSLR cameras. Structure from Motion (SFM) reconstruction is used to link and merge multiple Kinect point clouds and dense point clouds (from DSLR color images) to generate initial integrated point clouds. Then, bundle adjustment is used to resolve the exterior orientation (EO) of all images. Those exterior orientations are used as the initial values to combine these point clouds at each frame into the same coordinate system using Helmert (seven-parameter) transformation. Experimental results demonstrate that the design of the data acquisition system and the data processing procedure can generate dense and fully colored point clouds of indoor environments successfully even in featureless areas. The accuracy of the generated point clouds were evaluated by comparing the widths and heights of identified objects as well as coordinates of pre-set independent check points against in situ measurements. Based on the generated point clouds, complete and accurate three-dimensional models of indoor environments can be constructed effectively.


2019 ◽  
Vol 11 (12) ◽  
pp. 1471 ◽  
Author(s):  
Grazia Tucci ◽  
Antonio Gebbia ◽  
Alessandro Conti ◽  
Lidia Fiorini ◽  
Claudio Lubello

The monitoring and metric assessment of piles of natural or man-made materials plays a fundamental role in the production and management processes of multiple activities. Over time, the monitoring techniques have undergone an evolution linked to the progress of measure and data processing techniques; starting from classic topography to global navigation satellite system (GNSS) technologies up to the current survey systems like laser scanner and close-range photogrammetry. Last-generation 3D data management software allow for the processing of increasingly truer high-resolution 3D models. This study shows the results of a test for the monitoring and computing of stockpile volumes of material coming from the differentiated waste collection inserted in the recycling chain, performed by means of an unmanned aerial vehicle (UAV) photogrammetric survey and the generation of 3D models starting from point clouds. The test was carried out with two UAV flight sessions, with vertical and oblique camera configurations, and using a terrestrial laser scanner for measuring the ground control points and as ground truth for testing the two survey configurations. The computations of the volumes were carried out using two software and comparisons were made both with reference to the different survey configurations and to the computation software.


2016 ◽  
Vol 63 (4) ◽  
pp. 647-663
Author(s):  
Vimal Kumar Pathak ◽  
Chitresh Nayak ◽  
Amit Kumar Singh ◽  
Himanshu Chaudhary

Abstract Computer-aided tools help in shortening and eradicating numerous repetitive tasks that reduces the gap between digital model and actual product. Use of these tools assists in realizing free-form objects such as custom fit products as described by a stringent interaction with the human body. Development of such a model presents a challenging situation for reverse engineering (RE) which is not analogous with the requirement for generating simple geometric models. Hence, an alternating way of producing more accurate three-dimensional models is proposed. For creating accurate 3D models, point clouds are processed through filtering, segmentation, mesh smoothing and surface generation. These processes help in converting the initial unorganized point data into a 3D digital model and simultaneously influence the quality of model. This study provides an optimum balance for the best accuracy obtainable with maximum allowable deviation to lessen computer handling and processing time. A realistic non trivial case study of free-form prosthetic socket is considered. The accuracy obtained for the developed model is acceptable for the use in medical applications and FEM analysis.


Author(s):  
V. Katsichti ◽  
G. Kontogianni ◽  
A. Georgopoulos

Abstract. In archaeological excavations, many small fragments or artefacts are revealed whose fine details sometimes should be captured in 3D. In general, 3D documentation methods fall into two main categories: Range-Based modelling and Image-Based modelling. In Range Based modelling, a laser scanner (Time of Flight, Structured light, etc.) is used for the raw data acquisition in order to create the 3D model of an object. The above method is accurate enough but is still very expensive in terms of equipment. On the other hand, Image-Based modelling, is affordable because the equipment required is merely a camera with the appropriate lens, and possibly a turntable and a tripod. In this case, the 3D model of an object is created by suitable processing of images which are taken around the object with a large overlap. In this paper, emphasis is given on the effectiveness of 3D models of frail archaeological finds originate from the palatial site of Ayios Vasileios in Laconia in the south-eastern Peloponnese, using low-cost equipment and methods. The 3D model is also produced using various, mainly freeware, hence low-cost, software and the results are compared to those from a well-established commercial one.


Author(s):  
Muntaseer Kainat ◽  
Celal Cakiroglu ◽  
Samer Adeeb ◽  
J. J. Roger Cheng ◽  
Michael Martens

Pipe elbow is a common feature in pipelines and piping systems as a means to changing directions of otherwise straight pipelines. Irrespective of the processes involved in manufacturing pipe elbows, it is of interest to investigate whether they have any geometric imperfections. Researchers at the University of Alberta have devised a technique to measure initial imperfection of straight pipes prior to testing, using high resolution 3D surface profiler in conjunction with 3D reverse engineering software. The objective of the current study is to extend the imperfections measurement technique from measuring straight pipe segments to pipe elbows. Six (6) ninety (90) degree elbows are measured in this research with outside diameters ranging from NPS 12 inch to NPS 42 inch. A 3D laser scanner is used to acquire surface data and create 3D models corresponding to each elbow. A method for the geometric analysis of the elbows is developed using 3D inspection and reverse engineering software Geomagic®. The geometric idealization of a pipe elbow is a torus, which can be defined by a circle revolving around an axis, coplanar with the circle. The idealized geometry for each elbow is obtained through the developed method of geometric analysis, which includes the diameter of the circle defining the torus, and its distance from the axis of revolution. The difference between the ideal torus and the scanned geometry is considered as imperfection of each pipe elbow. The wall thickness values at the ends or edges of select pipe elbows are also measured from the scanned data and are reported as percentage deviation from the specified wall thickness around the perimeter at different cross sections. The 3D reverse engineering of the elbows indicated that they resemble the ideal geometry very closely. The ovalization imperfections are seen to be well within the value specified by CSA Z662-11. The wall thickness deviations are seen to vary between −10% to +25% of the specified value, with increased thickness being more prominent in the elbows. Finite element analysis of an elbow with thickness imperfection shows that higher hoop stress appears on the intrados than initially intended.


2014 ◽  
Vol 982 ◽  
pp. 94-99 ◽  
Author(s):  
Michal Mára ◽  
Petr Maca

Reverse engineering is a specialization which was developed a lot in the 21st century. The major aim is researching and describing the principals and procedures of process and structures. Reverse engineering in civil engineering is used to describe the applied loadings which caused corruption or failure of a structure or it is used to reconstruct 3D models of the original object. The aim of this paper is to compare response to static and impact loading of two materials, i.e. plain concrete and high-performance concrete (HPC), with respect to the fracture surface area. These areas were scanned by the 3D laser scanner and they were evaluated in the graphic programs. The main objective of this paper is a presentation of measured data, which can be used to determine the size of the applied loadings using reverse engineering.


2012 ◽  
Vol 503-504 ◽  
pp. 215-218 ◽  
Author(s):  
Da Wei Wu ◽  
Xiao Fei Ding ◽  
Gang Tong

This paper analyzes the structure of molding tool for composite component, and proposes a method of surface design of molding tool based on reverse engineering. By using handy laser scanner, the point cloud data is obtained from the composite component, which is processed in Geomagic Studio. Then the processed data is imported into CATIA for Surface fitting. The surface of molding tool for composite component is rapidly and accurately designed by analyzing 3D error and comparing cross-sectional data.


Sign in / Sign up

Export Citation Format

Share Document