scholarly journals Structural Aspects and Characterization of Structure in the Processing of Titanium Grade4 Different Chips

Metals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 101
Author(s):  
Krzysztof Topolski ◽  
Jakub Jaroszewicz ◽  
Halina Garbacz

This study presents the structural aspects of the solid-state processing of various titanium chips. The structural characterization of: (1) commercial pure Ti in the as-received state, (2) manufactured chips, and (3) products of the chip processing are presented. Pure single-phase titanium Grade4 (Ti Gr4) was processed which, among all grades of pure titanium, is characterized by the lowest possible purity and the highest possible strength at the same time. Four geometries of chips were processed, i.e., chips after turning (thin and coarse), and chips after milling (thin and coarse). An unconventional plastic working method was applied to transform a dispersed form (chips) into solid, bulk metal in the form of rods without re-melting. The rods with a diameter of Ø8 mm and a length of about 500 mm were manufactured. Based on computer tomography and Archimedes measurements, it was found that the manufactured rods were consolidated and near fully dense. In turn, microscopy investigations proved that conventional, polycrystalline, grained structures were obtained. Only an insignificantly small number of internal defects were revealed, meaning that the obtained rods exhibited a proper structure typical for commercial titanium. Obtained materials, except of small surface inclusions, were fee of impurities. Whereas the results of the compression tests proved that the manufactured rods are characterized by new interatomic bonds, cohesion and plasticity analogous to those of titanium in the as-received state.

Ceramics ◽  
2021 ◽  
Vol 4 (2) ◽  
pp. 108-120
Author(s):  
Simone Barbarossa ◽  
Roberto Orrù ◽  
Valeria Cannillo ◽  
Antonio Iacomini ◽  
Sebastiano Garroni ◽  
...  

Due to their inherent chemical complexity and their refractory nature, the obtainment of highly dense and single-phase high entropy (HE) diborides represents a very hard target to achieve. In this framework, homogeneous (Hf0.2Nb0.2Ta0.2Mo0.2Ti0.2)B2, (Hf0.2Zr0.2Ta0.2Mo0.2Ti0.2)B2, and (Hf0.2Zr0.2Nb0.2Mo0.2Ti0.2)B2 ceramics with high relative densities (97.4, 96.5, and 98.2%, respectively) were successfully produced by spark plasma sintering (SPS) using powders prepared by self-propagating high-temperature synthesis (SHS). Although the latter technique did not lead to the complete conversion of initial precursors into the prescribed HE phases, such a goal was fully reached after SPS (1950 °C/20 min/20 MPa). The three HE products showed similar and, in some cases, even better mechanical properties compared to ceramics with the same nominal composition attained using alternative processing methods. Superior Vickers hardness and elastic modulus values were found for the (Hf0.2Nb0.2Ta0.2Mo0.2Ti0.2)B2 and the (Hf0.2Zr0.2Ta0.2Mo0.2Ti0.2)B2 systems, i.e., 28.1 GPa/538.5 GPa and 28.08 GPa/498.1 GPa, respectively, in spite of the correspondingly higher residual porosities (1.2 and 2.2 vol.%, respectively). In contrast, the third ceramic, not containing tantalum, displayed lower values of these two properties (25.1 GPa/404.5 GPa). However, the corresponding fracture toughness (8.84 MPa m1/2) was relatively higher. This fact can be likely ascribed to the smaller residual porosity (0.3 vol.%) of the sintered material.


2019 ◽  
Vol 28 (1) ◽  
pp. 81-88
Author(s):  
Miguel A. González-Montijo ◽  
Hildélix Soto-Toro ◽  
Cristian Rivera-Pérez ◽  
Silvia Esteves-Klomsingh ◽  
Oscar Marcelo Suárez

AbstractHistorically known for being one of the major pollutants in the world, the construction industry, always in constant advancement and development, is currently evolving towards more environmentally friendly technologies and methods. Scientists and engineers seek to develop and implement green alternatives to conventional construction materials. One of these alternatives is to introduce an abundant, hard to recycle, material that could serve as a partial aggregate replacement in masonry bricks or even in a more conventional concrete mixture. The present work studied the use of 3 different types of repurposed plastics with different constitutions and particle size distribution. Accordingly, several brick and concrete mix designs were developed to determine the practicality of using these plastics as partial aggregate replacements. After establishing proper working material ratios for each brick and concrete mix, compression tests as well as tensile tests for the concrete mixes helped determine the structural capacity of both applications. Presented results proved that structural strength can indeed be reached in a masonry unit, using up to a 43% in volume of plastic. Furthermore, a workable structural strength for concrete can be achieved at fourteen days of curing, using up to a 50% aggregate replacement. A straightforward cost assessment for brick production was produced as well as various empirical observations and recommendations concerning the feasibility of each repurposed plastic type examined.


Author(s):  
Charchit Kumar ◽  
Alejandro Palacios ◽  
Venkata A. Surapaneni ◽  
Georg Bold ◽  
Marc Thielen ◽  
...  

The surfaces of animals, plants and abiotic structures are not only important for organismal survival, but they have also inspired countless biomimetic and industrial applications. Additionally, the surfaces of animals and plants exhibit an unprecedented level of diversity, and animals often move on the surface of plants. Replicating these surfaces offers a number of advantages, such as preserving a surface that is likely to degrade over time, controlling for non-structural aspects of surfaces, such as compliance and chemistry, and being able to produce large areas of a small surface. In this paper, we compare three replication techniques among a number of species of plants, a technical surface and a rock. We then use two model parameters (cross-covariance function ratio and relative topography difference) to develop a unique method for quantitatively evaluating the quality of the replication. Finally, we outline future directions that can employ highly accurate surface replications, including ecological and evolutionary studies, biomechanical experiments, industrial applications and improving haptic properties of bioinspired surfaces. The recent advances associated with surface replication and imaging technology have formed a foundation on which to incorporate surface information into biological sciences and to improve industrial and biomimetic applications. This article is part of the theme issue ‘Bioinspired materials and surfaces for green science and technology’.


2014 ◽  
Vol 11 (03) ◽  
pp. 1343002 ◽  
Author(s):  
GIULIO MAIER ◽  
VLADIMIR BULJAK ◽  
TOMASZ GARBOWSKI ◽  
GIUSEPPE COCCHETTI ◽  
GIORGIO NOVATI

A survey is presented herein of some recent research contributions to the methodology of inverse structural analysis based on statical tests for diagnosis of possibly damaged structures and for mechanical characterization of materials in diverse industrial environments. The following issues are briefly considered: identifications of parameters in material models and of residual stresses on the basis of indentation experiments; mechanical characterization of free-foils and laminates by cruciform and compression tests and digital image correlation measurements; diagnosis, both superficially and in depth, of concrete dams, possibly affected by alkali-silica-reaction or otherwise damaged.


RSC Advances ◽  
2016 ◽  
Vol 6 (101) ◽  
pp. 99297-99305 ◽  
Author(s):  
Hsing-I. Hsiang ◽  
Chang-Ting Yang ◽  
Jui-Huan Tu

In this study, a novel and facile hot injection method for the synthesis of single phase CuSbSe2 crystallites was developed by using low toxic triethylene glycol as both the solvent and reducing agent and triethylenetetramine as co-reducing agent.


1990 ◽  
Vol 186 ◽  
Author(s):  
Shyh-Chin Huang ◽  
Ernest L. Hall

AbstractTernary TiAl-base alloys containing Cr have been studied, using rapidsolidification processed materials. The mechanical behavior has been characterized and related to other results on microstructure, site occupancy, phase stability, and deformation mode. It was found that Cr additions enhance the plasticity of duplex γ+a2 alloys, but not single-phase alloys. The ductilization effect of Cr is partially due to its ability to occupy Al lattice sites and modify the Ti-Al bond. It is also partially due to its ability to promote twin formation, by modifying the Al partitioning and therefore the a2/γ volume ratio in transformed regions.


Sign in / Sign up

Export Citation Format

Share Document