scholarly journals Improving the Fatigue of Newly Designed Mechanical System Subjected to Repeated Impact Loading

Metals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 139
Author(s):  
Seongwoo Woo ◽  
Dennis L. O’Neal ◽  
Dereje Engida Woldemichael ◽  
Samson Mekbib Atnaw ◽  
Muluneh Mekonnen Tulu

This paper develops parametric accelerated life testing (ALT) as a systematic reliability method to produce the reliability quantitative (RQ) specifications—mission cycle—for recognizing missing design defects in mechanical products as applying the accelerated load, expressed as the inverse of stress ratio, R. Parametric ALT is a way to enhance the prediction of fatigue failure for mechanical systems subjected to repeated impact loading. It incorporates: (1) A parametric ALT plan formed on the system BX lifetime, (2) a fatigue failure and design, (3) customized ALTs with design alternatives, and (4) an assessment of whether the last design(s) of the system fulfills the objective BX lifetime. A BX life concept with a generalized life-stress model and a sample size equation are suggested. A domestic refrigerator hinge kit system (HKS), which was a newly designed mechanical product, was used to illustrate the methodology. The HKS was subjected to repeated impact loading resulting in failure of the HKS in the field. To conduct ALTs, a force and momentum balance was utilized on the HKS. A straightforward impact loading of the HKS in closing the refrigerator door was examined. At the first ALT, the housing of the HKS failed. As an action plan, the hinge kit housing was modified by attaching inside supporting ribs to the HKS to provide sufficient mechanical strength against its loading. At the second ALT, the torsional shaft in the HKS made with austenitic ductile iron (18 wt% Ni) failed. The cracked torsional shaft for the 2nd ALTs came from its insufficient rounding, which failed due to repeated stress. As an action plan, to have sufficient material strength for the repetitive impact loads, the torsional shaft was reshaped to give it more rounding from R0.5 mm to R2.0 mm. After these modifications, there were no problems at the third ALT. The lifetime of the HKS in the domestic refrigerator was assured to be B1 life 10 years.

2021 ◽  
Vol 3 (1) ◽  
pp. 14
Author(s):  
Seongwoo Woo ◽  
Dennis L. O’Neal ◽  
Samson Mekbib Atnaw ◽  
Muluneh Mekonnen Tulu

This paper suggests parametric accelerated life testing (ALT) as a systematic reliability technique to generate the reliability quantitative (RQ) specification such as mission cycle for identifying design flaws in mechanical systems as exerting the accelerated load, defined as the reverse of stress ratio, R. Parametric ALT therefore is a procedure to improve the fatigue for mechanical products subjected to repetitive loading. It includes: (1) a system BX lifetime shaped on the parametric ALT plan; (2) a fatigue failure and design; (3) tailored ALTs with alternatives; and (4) an assessment of whether the design(s) of the product attains the targeted BX lifetime. A BX life ideas, a life-stress model, and a sample size formulation for parametric ALT are proposed. A reciprocating compressor in a domestic refrigerator is utilized to explain this methodology. The compressor was subjected to repetitive impact loading due to the pressure difference between condenser and evaporator, which results in the compressor field failure. To analyze and conduct parametric ALTs, as mass/energy balance was utilized on the vapor-compression refrigerating cycle, a simple pressure loading of the compressor in operating the refrigerator was investigated. At the first ALT, the compressor was locked due to the fractured suction reed valve made of Sandvik 20C carbon steel (1 C, 0.25 Si, 0.45 Mn). The dominant failure modes of the suction reed valve in the parametric ALTs were established to be very close to that of the fractured product from the marketplace. The root cause of the fatigue failure of the suction reed valve was an amount of overlap between the suction reed valve and the valve plate in combination of repeated pressure loading in the compressor. To supply sufficient mechanical strength, the design faults were altered by the trespan dimensions tumbling process, a ball peening and brushing process for the valve plate. At the second ALT, a compressor was locked due to the intrusion between the crankshaft and the thrust washer. The corrective action plan was to give heat treat the surface of crankshaft made of cast iron (0.45 C, 0.25 Si, 0.8 Mn, 0.03 P). After these alternations, there were no issues at the third ALT. The lifetime of the compressor was ensured to have B1 life 10 years.


2021 ◽  
Vol 349 ◽  
pp. 03009
Author(s):  
Seong-woo Woo ◽  
Dennis L. O’Neal ◽  
Yimer Mohammed Hassen

To enhance the design of mechanical systems, parametric Accelerated Life Testing (ALT) as a systematic reliability method is proposed as a way to evaluate the design of mechanical systems subjected to repeated impact stresses. It requires: (1) a parametric ALT scheme shaped on system BX lifetime, (2) a load inspection, (3) parametric ALTs with the associated design modifications, and (4) an assessment of whether the revised product design(s) reach the targeted BX life-time. We propose using a general life-stress model and sample size equation. A test example using both market data and parametric ALT was the redesign of a hinge kit system (HKS) in a refrigerator. To conduct parametric ALTs, a force and moment balance analysis was utilized. The mechanical impact loadings of the HKS were evaluated for an working refrigerator door. For the first ALT, the HKS failure happened in the crack/fracture of the kit housing and oil spilled from the damper when the HKS was disassembled. The failure modes and mechanisms constructed in the 1st ALT were similar to those of the unsuccessful samples found from the marketplace. The missing design parameters of the HKS included stress raisers such as corner roundings and the rib of the housing in HKS, the seal in the oil damper, and the material of the cover housing. In the second ALT, the cover housing fractured. The design defect of the cover housing in the HKS was the plastic material. As a corrective action plan, the cover housing was modified from plastic to aluminium. After the second ALT, the lifetime of the modified HKS was reassured to be B1 life 10 years with a yearly failure rate of 0.1%.


2022 ◽  
pp. 241-266
Author(s):  
Seongwoo Woo ◽  
Dennis L. O'Neal ◽  
Yimer Mohammed Hassen

This chapter explains the parametric accelerated life testing (ALT) to recognize design defects in mechanical products. A life-stress model and a sample size formulation are suggested. A compressor is used to demonstrate this method. Compressors were failing in the field. At the first ALT, the compressor failed due to a fractured suction reed valve. The failure modes were similar to those valves returned from the field. The fatigue of the suction reed valves came from an overlap between the suction reed valve and the valve plate. The problematic design was modified by the trespan dimensions, tumbling process, a ball peening, and brushing process for the valve plate. At the second ALT, the compressor locked due to the intrusion between the crankshaft and thrust washer. The corrective action plan performed the heat treatment to the exterior of the crankshaft made of cast iron. After the design modifications, there were no troubles during the third ALT. The lifetime of compressor was secured to have a B1 life 10 years.


Metals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1261
Author(s):  
Seongwoo Woo ◽  
Dennis L. O’Neal

This study demonstrates the use of parametric accelerated life testing (ALT) as a way to recognize design defects in mechanical products in creating a reliable quantitative (RQ) specification. It covers: (1) a system BX lifetime that X% of a product population fails, created on the parametric ALT scheme, (2) fatigue and redesign, (3) adapted ALTs with design alternations, and (4) an evaluation of whether the system design(s) acquires the objective BX lifetime. A life-stress model and a sample size formulation, therefore, are suggested. A refrigerator compressor is used to demonstrate this method. Compressors subjected to repetitive impact loading were failing in the field. To analyze the pressure loading of the compressor and carry out parametric ALT, a mass/energy balance on the vapor-compression cycle was examined. At the first ALT, the compressor failed due to a cracked or fractured suction reed valve made of Sandvik 20C carbon steel (1 wt% C, 0.25 wt% Si, 0.45 wt% Mn). The failure modes of the suction reed valves were similar to those valves returned from the field. The fatigue failure of the suction reed valves came from an overlap between the suction reed valve and the valve plate in combination with the repeated pressure loading. The problematic design was modified by the trespan dimensions, tumbling process, a ball peening, and brushing process for the valve plate. At the second ALT, the compressor locked due to the intrusion between the crankshaft and thrust washer. The corrective action plan specified to perform the heat treatment to the exterior of the crankshaft made of cast iron (0.45 wt% C, 0.25 wt% Si, 0.8 wt% Mn, 0.03 wt% P). After these design modifications, there were no troubles during the third ALT. The lifetime of the compressor was secured to have a B1 life of 10 years.


2021 ◽  
Author(s):  
Bruno Luiz Barbosa das Chagas ◽  
Celso Kazuyuki Morooka

Abstract Advances in subsea exploration in the oceans to discover new petroleum reservoirs and sometimes different kind of minerals at the seabed in ultra deepwater, continuously introduce new challenges in offshore drilling operations. This motivates the development of increasingly safe maritime operations. In offshore petroleum, a marine drilling riser is the pipe that connects a wellhead at the sea bottom to a drillship at the sea surface, as an access to the wellbore. It serves as a guide for the drilling column with the drill bit and conductor to carry cuttings of rock coming from the wellbore drilling and its construction. Drilling riser is constantly exposed to adversity from the environment, such as waves, sea currents and platform motions induced by waves. These elements of the environment are prevailing factors that can cause a riser failure during deepwater drilling operations with undesirable consequences for the environment. In the present work, key parameters that influence the probability of fatigue failure in a marine drilling riser are identified, and a parametric evaluation with those parameters are carried out. Dynamic behavior of a riser is previously calculated and fatigue damage is estimated. Afterwards, the First Order Reliability Method (FORM) is applied to determine the probability of fatigue failure on the riser. Fundamentals of the procedure are described, and results are illustrated through the analysis for a typical riser in deepwater drilling operation. Parametric evaluations are done observing points considered as critical along the riser length, and looking to the sensitivity of key parameters in the process. For this study, the SN curve from API guidelines is applied and accumulated fatigue damage is estimated from simulations of the stress time series and applying the Palmgren-Miner’s rule. Finally, the influence of each parameter in the reliability of fatigue failure is verified and discussions given.


2021 ◽  
Author(s):  
Y. H. Park ◽  
J. Dana

Abstract Anisotropic composite materials have been extensively utilized in mechanical, automotive, aerospace and other engineering areas due to high strength-to-weight ratio, superb corrosion resistance, and exceptional thermal performance. As the use of composite materials increases, determination of material properties, mechanical analysis and failure of the structure become important for the design of composite structure. In particular, the fatigue failure is important to ensure that structures can survive in harsh environmental conditions. Despite technical advances, fatigue failure and the monitoring and prediction of component life remain major problems. In general, cyclic loadings cause the accumulation of micro-damage in the structure and material properties degrade as the number of loading cycles increases. Repeated subfailure loading cycles cause eventual fatigue failure as the material strength and stiffness fall below the applied stress level. Hence, the stiffness degradation measurement can be a good indication for damage evaluation. The elastic characterization of composite material using mechanical testing, however, is complex, destructive, and not all the elastic constants can be determined. In this work, an in-situ method to non-destructively determine the elastic constants will be studied based on the time of flight measurement of ultrasonic waves. This method will be validated on an isotropic metal sheet and a transversely isotropic composite plate.


2015 ◽  
Vol 784 ◽  
pp. 500-507 ◽  
Author(s):  
Hiroki Tamai ◽  
Yoshimi Sonoda

In the civil and structural engineering field, there are so many problems regarding act of impact loading against some structures due to natural disaster. So it is important to evaluate the damage condition of them after impact loading, and to estimate the residual performance of them. This study is focused on a reinforced concrete (herein after called RC) structure such as caisson breakwater and rock-shed. In order to quantitatively evaluate the dynamic behavior and cumulative damage of RC members under low-velocity single and repeated impact loading, we conducted numerical approach by using the theory of Continuum Damage Mechanics (herein after called CDM). At the result, we clarified not only impact behavior of the members but also the relationship between cumulative kinetic energy of repeated impact loading and cumulative damage of the members. In addition, applicability limit of our model based on scalar damage modeling was clarified.


2010 ◽  
Vol 118-120 ◽  
pp. 32-36 ◽  
Author(s):  
Jae Ung Cho ◽  
Li Yang Xie ◽  
Chong Du Cho ◽  
Sang Kyo Lee

The objective of this study is to investigate the effect of the low or high strain rate on the impact fatigue properties of the nickel foam material and to understand the lifetime of this material which is subjected to the repeated impacts at different energy levels. Failures of foam materials under single and repeated impacts analogous to fatigue are essential to designers and users in military and aerospace structures. The material failure induced by repeated impact loading becomes a critical issue because of significant loss of stiffness and compressive strength in the foam material. Testing methods to study impact(that is, high strain rate) fatigue are quite numerous; no single standard testing procedure is defined for studying the impact fatigue property of a material. The increasing application of foam material in aerospace structures, owing to high specific stiffness and strength has attracted a great concern about the high sensitivity to impact damage introduced during manufacture or in service, and the effects of such damage on structural degradation. To investigate this issue, this study sets up an experimental procedure to determine the impact fatigue properties of nickel foam material. This study performs both experimental and numerical investigations to catch the impact fatigue behavior of nickel foam with open type. Design life and probability of failure or survival at specified life can be calculated so that the fatigue life of nickel core material subjected to repeated impact loading is predicted.


Author(s):  
Karsten Stahl ◽  
Bernd-Robert Höhn ◽  
Thomas Tobie

Pitting and tooth root breakage are typical fatigue failure modes of case hardened gears. Both failure types are usually initiated at the surface or close to the surface. General trends in modern gear industry, such as improved gear design with adequate flank modifications, high-quality gear materials and high-performance lubricants, modern manufacturing processes with additional post-processes as shot peening and superfinishing as well as advanced calculation methods, have allowed an optimized utilization of the allowable pitting and bending stress numbers in recent years. As a result of the increased power density, however, the stresses below the surface rise with the consequence of an increased risk of fatigue failure initiation in the material below the surface. This paper describes main characteristics of a failure mode characterized by tooth breakages which start in the area of the active flank from cracks that are typically initiated at a considerable depth beneath the loaded flank surface. Based on theoretical and experimental investigations, relevant influence parameters related to gear design, operating conditions and material strength on the failure mode “Tooth Flank Breakage” will be discussed and basic principles of a developed calculation model to evaluate the risk of such failures presented. Finally, exemplarily experimental results from gear running tests, which failed due to flank breakage, are compared to the results of the new calculation model.


Sign in / Sign up

Export Citation Format

Share Document