scholarly journals Quantitative Correlation and Control Strategy for Element Content Fluctuation along Casting Direction in Central Area of Continuous Casting Billet

Metals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 452
Author(s):  
Dongwei Guo ◽  
Zibing Hou ◽  
Zhiqiang Peng ◽  
Qian Liu ◽  
Jianghai Cao

The statistical correlation was applied to analyze the specific and quantitative correlation relationship between the solidification structure and central segregation along the casting direction in carbon steel billet. On this basis, the segregation formation mechanism of the solute element and related control strategy were investigated. It is found that the equiaxed crystal zone fluctuation along the casting direction determines the fluctuation degree of central segregation. At the same time, the central segregation at a certain position is mostly affected by the equiaxed crystal zone width at the hysteretic position. Moreover, the casting speed can influence the columnar to equiaxed transition (CET) fluctuation along the casting direction by affecting the flow of molten steel in the billet. Overall, the segregation mechanism of solute elements along the casting direction can be summarized into two aspects: First, with the growth of columnar crystals in the initial stage, the segregated solutes are continuously enriched and distributed in the equiaxed crystal zone after CET. The fluctuation of the equiaxed crystal zone will affect the distribution of the enriched solute in the billet and cause the fluctuation of the central segregation. Second, due to the solidification shrinkage at the end of solidification, the solute-enriched liquid phase at the hysteretic position is pumped to the solidification endpoint and forms the central V-shaped segregation. Meanwhile, the stable solidification structure (columnar crystal length or equiaxed crystal zone width) along the casting direction and control measures preceded equiaxed crystal zone formation are beneficial to reduce the central V-shaped segregation.

Metals ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 76 ◽  
Author(s):  
Fujian Guo ◽  
Xuelin Wang ◽  
Jingliang Wang ◽  
R. D. K. Misra ◽  
Chengjia Shang

The solidification structure and segregation of continuously cast billets produced by different continuous casting processes are investigated to elucidate their effect on segregated bands in hot-rolled section steel. It suggested that segregated spots are mainly observed in the equiaxed crystal zone of a billet. The solidification structure is directly related to superheating and the intensities of secondary cooling. To a certain extent, the ratio of the columnar crystal increases with the increase of superheating and secondary cooling. Moreover, the number of spot segregations decreases with the decrease of the equiaxed crystal ratio. After hot rolling, the segregation spots are deformed to form segregated bands in steels. The severe segregation of Mn in segregated bands corresponds with that in the segregation spots. The elongation ratio and low temperature toughness deteriorate significantly by a high fraction of degenerate pearlite caused by central segregation. With a decrease of central segregation, the total elongation is increased by 10% and the ductile–brittle transition temperature (DBTT) is also reduced from −10 to −40 °C. According to the experimental results, columnar crystal in billets is preferred to effectively reduce the degree of central segregation and further improve low temperature toughness and the elongation ratio.


TAPPI Journal ◽  
2018 ◽  
Vol 17 (05) ◽  
pp. 295-305
Author(s):  
Wesley Gilbert ◽  
Ivan Trush ◽  
Bruce Allison ◽  
Randy Reimer ◽  
Howard Mason

Normal practice in continuous digester operation is to set the production rate through the chip meter speed. This speed is seldom, if ever, adjusted except to change production, and most of the other digester inputs are ratioed to it. The inherent assumption is that constant chip meter speed equates to constant dry mass flow of chips. This is seldom, if ever, true. As a result, the actual production rate, effective alkali (EA)-to-wood and liquor-to-wood ratios may vary substantially from assumed values. This increases process variability and decreases profits. In this report, a new continuous digester production rate control strategy is developed that addresses this shortcoming. A new noncontacting near infrared–based chip moisture sensor is combined with the existing weightometer signal to estimate the actual dry chip mass feedrate entering the digester. The estimated feedrate is then used to implement a novel feedback control strategy that adjusts the chip meter speed to maintain the dry chip feedrate at the target value. The report details the results of applying the new measurements and control strategy to a dual vessel continuous digester.


2014 ◽  
Vol 9 (4) ◽  
pp. 792 ◽  
Author(s):  
Anna Pinnarelli ◽  
Giuseppe Barone ◽  
Giovanni Brusco ◽  
Alessandro Burgio ◽  
Daniele Menniti ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document